
 

 

 

Board of Governors of the Federal Reserve System 
 

International Finance Discussion Papers 
 

Number 905 
 

September 2007 
 
 
 
 
 
 
 
 
 

 
Frequency of Observation and the Estimation of  

 Integrated Volatility in Deep and Liquid Financial Markets 
 
 
 
 

Alain Chaboud, Benjamin Chiquoine, Erik Hjalmarsson, and Mico Loretan 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
NOTE:  International Finance Discussion Papers are preliminary materials circulated to stimulate 
discussion and critical comment.  References in publications to International Finance Discussion Papers 
(other than an acknowledgment that the writer has had access to unpublished material) should be cleared 
with the author or authors. Recent IFDPs are available on the Web at www.federalreserve.gov/pubs/ifdp/. 



Frequency of Observation and the Estimation of

Integrated Volatility in Deep and Liquid Financial Markets�

Alain Chaboud Benjamin Chiquoine Erik Hjalmarsson Mico Loretan

September 2007

Abstract

Using two newly available ultrahigh-frequency datasets, we investigate empirically how frequently one

can sample certain foreign exchange and U.S. Treasury security returns without contaminating estimates

of their integrated volatility with market microstructure noise. Using volatility signature plots and a

recently-proposed formal decision rule to select the sampling frequency, we �nd that one can sample FX

returns as frequently as once every 15 to 20 seconds without contaminating volatility estimates; bond

returns may be sampled as frequently as once every 2 to 3 minutes on days without U.S. macroeconomic

announcements, and as frequently as once every 40 seconds on announcement days. With a simple

realized kernel estimator, the sampling frequencies can be increased to once every 2 to 5 seconds for FX

returns and to about once every 30 to 40 seconds for bond returns. These sampling frequencies, especially

in the case of FX returns, are much higher than those often recommended in the empirical literature

on realized volatility in equity markets. We suggest that the generally superior depth and liquidity of

trading in FX and government bond markets contributes importantly to this di¤erence.
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1 Introduction

Modeling, measuring, and estimating the volatility of �nancial asset returns is important for many economic

and �nancial applications, including forecasting and analyzing alternative decisions available to investors

and policy makers. One approach to estimating volatility is to use a parametric framework, such as the class

of ARCH, GARCH, and stochastic volatility models. If data on returns are available at su¢ ciently high

frequencies, one can also estimate volatility nonparametrically by computing the realized volatility, which is

the natural estimator of the ex post integrated volatility. This latter method is appealing both because it

is computationally simple and because it is a valid estimator under fairly mild statistical assumptions. In

principle, the higher the sampling frequency is, the more precise the estimates of integrated volatility be-

come. In practice, however, the presence of so-called market microstructure features at very high sampling

frequencies may create important complications. The �nance literature has identi�ed many such features;

among them are the fact that �nancial transactions� and hence price changes and non-zero returns� arrive

discretely rather than continuously over time, the fact that buyers and sellers usually face di¤erent prices

(separated by the bid-ask spread), the presence of negative serial correlation of returns to successive trans-

actions (including the so-called bid-ask bounce), and the price impact of trades. For an overview of many

of these market microstructure issues and their importance for �nancial theory and practice, we refer the

reader to, e.g., the books by Hasbrouck (2006), O�Hara (1998), and Campbell et al. (1997, Ch. 3), as well as

the journal articles by Roll (1984), Harris (1990, 1991), and Hasbrouck (1991).

The presence of market microstructure features is generally believed to elevate estimates of integrated

volatility, especially at the very highest sampling frequencies, relative to the base case of no market mi-

crostructure noise. However, this need not always be the case. For example, if an organized stock exchange

has designated market makers and specialists, and if these participants are slow in adjusting prices in re-

sponse to shocks (possibly because the exchange�s rules explicitly prohibit them from adjusting prices by

larger amounts all at once), it may be the case that realized volatility could drop if it is computed at those

sampling frequencies for which this behavior is thought to be relevant.1 In any case, it is widely recognized

that market microstructure issues can contaminate estimates of integrated volatility in important ways,

especially if the data are sampled at ultra-high frequencies, as is becoming more and more common.

Two di¤erent approaches have emerged to dealing with the issue of contamination by market microstruc-

ture when estimating integrated volatility. The �rst approach, which is reportedly the more common one,

is simply to sample su¢ ciently sparsely so that any market microstructure issues should not be a signi�cant

1 In fact, Hansen and Lunde (2006) record as one of their empirical �facts� that market microstructure noise is negatively
correlated with the returns, and hence biases the estimated volatility downward. However, as we show in this paper, this
empirical stylized fact� which is based on their analysis of high-frequency stock returns� does not seem to carry over to the
foreign exchange and bond markets.

1



concern. This approach is appealing because it permits the use of the intuitive and simple standard realized

volatility estimator, and also because it does not require making any assumptions about the nature of the

market microstructure noise. However, the choice of sampling frequency is typically somewhat ad hoc, and

it could lead to ine¢ cient estimates of integrated volatility if the sampling frequency is chosen too con-

servatively, i.e., too low. In an attempt to address this concern, Aït-Sahalia et al. (2005) and Bandi and

Russell (2006b) have proposed optimal sampling frequency rules that are based on a bias-variance trade-o¤,

viz., between sampling more often and incurring a larger bias and sampling less often and incurring larger

variance. Interestingly, whereas much of the early empirical work on estimating integrated volatility was

performed using FX market data (e.g., Zhou, 1996, and Andersen, Bollerslev, Diebold, and Labys, 2001),

much of the more recent work in this �eld, especially on the optimal choice of sampling frequency, has been

applied to markets for individual stocks (e.g., Bandi and Russell, 2006b, and Hansen and Lunde, 2006).

The second approach is to design alternative estimators of integrated volatility that are less sensitive

than the basic realized volatility estimator to the presence of market microstructure noise. This approach,

which generally relies on kernel-based or subsampling methods to let researchers use returns sampled at

higher frequencies, potentially should allow for a more e¢ cient use of the data. A drawback is that the

computation of these estimators may be considerably more complicated than that of the standard realized

volatility estimator. Moreover, these more robust estimators may give up some of the standard estimator�s

appealing simplicity and intuitiveness. These concerns, however, may be overblown in practice. For instance,

in this paper we �nd that a very simple version of a kernel-based estimator can substantially improve upon

the performance of the standard estimator, in the sense of permitting the use of much-higher sampling

frequencies to estimate integrated volatility without incurring market microstructure-induced bias.

The �rst aim in the empirical section of our paper is to study, for two speci�c �nancial assets, how the

standard estimator of integrated volatility is a¤ected by the choice of sampling frequency. The two assets

we study are traded in some of the deepest and most liquid �nancial markets in existence today; they are

the spot exchange rate of the dollar/euro currency pair, obtained from Electronic Broking Systems (EBS),

and the price of the on-the-run 10-year U.S. Treasury note, traded on BrokerTec. Both of these markets

are electronic order book systems, which quite likely represent the future of wholesale �nancial trading

systems. Both markets are strictly inter-dealer. These markets are far larger in terms of total trading

volume than markets for individual stocks� even the most liquid handful of stocks traded on the New

York Stock Exchange� , and bid-ask spreads are narrower than in typical stock markets. In 2005, bid-ask

spreads averaged 1.04 basis points for dollar/euro spot transactions on EBS and 1.68 basis points for 10-year

Treasury note transactions on BrokerTec. The two time series are available at ultra-high frequencies� up to

the second-by-second frequency.

2



Our main hypothesis is that, in such deep and liquid markets, market microstructure noise should pose

less of a concern for volatility estimation, in the sense that it should be possible to sample returns on

such assets more frequently than say, returns on individual stocks, before estimates of integrated volatility

encounter signi�cant bias caused by the markets�microstructure features. This thesis is indeed borne out

by our empirical work. We show that it is possible to sample the FX data as often as once every 15

to 20 seconds without the standard estimator of integrated volatility showing discernible e¤ects stemming

from market microstructure noise. The corresponding sampling interval lengths for returns on 10-year

Treasury notes are between 2 and 3 minutes. These intervals are shorter than the sampling intervals of

several minutes, usually �ve or more minutes, that have often been recommended in the empirical literature

on estimating integrated volatility for a number of �nancial markets. These shorter sampling intervals

and associated larger sample sizes a¤ord a considerable gain in estimation precision. We conclude that in

very deep and liquid markets, microstructure-induced frictions may be much less of an issue for volatility

estimation than was previously thought. We also con�rm the results of several previous empirical studies

that major macroeconomic announcements systematically a¤ect integrated volatility. In addition, we show

that the optimal choice of sampling frequency is higher� and the sampling interval lengths are therefore

lower� on days with scheduled U.S. macroeconomic announcements.

Although the sampling frequencies at which the standard realized volatility estimator can be used are

already very high for the two empirical time series we consider in this paper, it is possible to sample at even

higher frequencies by using so-called kernel estimators, which are designed explicitly to control for the e¤ects

of market microstructure noise. These estimators can be viewed as the equivalent of so-called robust variance

estimators in the traditional time series econometrics literature. We �nd that by using a very simple version

of a kernel estimator, it is possible to sample FX returns at frequencies as high as once every 2 to 5 seconds,

and that bond returns can be sampled as frequently as once every 30 to 40 seconds. This estimator, which is

almost as easy to compute as the standard realized volatility estimator, thus o¤ers a substantial additional

gain in e¢ ciency in terms of how often one can sample on an intraday basis.

Finally, we also examine how certain alternative estimators and measures of daily variation perform

for the two time series at hand. These alternative estimators are not based on functions of the standard

quadratic variation process, but instead on functions of absolute variation and bipower variation processes. A

reason for considering such methods is that they may be more robust than the standard estimator to outlier

activity (heavy tails) in the data and, in particular, to jumps that may occur in the price series. In general,

these estimators measure somewhat di¤erent (but highly relevant) aspects of daily variation than does the

standard realized volatility estimator. We �nd some evidence that these alternative methods are indeed more

robust than the standard estimator to the presence of jumps in the returns series. Speci�cally, estimates
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of integrated volatility that are based on absolute variation show less dispersion across announcement and

non-announcement days than estimates that are based on squared variation. However, we �nd no evidence

that these robust methods are also less sensitive than the standard estimator with regard to bias imparted

by market microstructure noise. To the contrary, our results indicate that one should typically sample less

frequently when using these robust estimators, relative to the optimal sampling frequency found for the

standard volatility estimator.

The remainder of our paper is organized as follows. Section 2 provides some motivation for the use of

the standard estimator of integrated volatility, which is based on the quadratic variation of returns. The

section also details how market microstructure noise may cause bias in the standard estimator, provides an

introduction to kernel-based estimators designed to circumvent this problem, and sets out the use of absolute

and bipower variation processes. Section 3 provides an overview of the characteristics of the foreign exchange

and bond market data used in our empirical work. Section 4 provides the empirical results for the standard

estimator of realized volatility, using volatility signature plots and the Aït-Sahalia et al. (2005) and Bandi

and Russell (2006b) rule for choosing sampling frequencies. Section 5 shows the results from the realized

kernel estimators. Section 6 provides the estimation results for the robust estimators of realized volatility,

such as the one that is based on the absolute variation process. Section 7 provides a discussion of some

broader issues raised by our empirical �ndings, and Section 8 concludes.

2 Motivation and estimation techniques

2.1 Motivation

The fundamental idea behind the use of realized volatility and high-frequency data is that quadratic variation

can be used as a measure of ex-post variance in a di¤usion process. The quadratic variation QVt of a

process Xt is de�ned as

QVt = [X;X]t = plim
n!1

nX
j=1

�
Xtj �Xtj�1

�2
; (1)

for any sequence of partitions 0 = t0 < t1 < � � � < tn = t with supj jtj � tj�1j # 0 as n!1 (see, for instance,

Andersen, Bollerslev, Diebold, and Labys, 2003, and Barndor¤-Nielsen and Shephard, 2004a). If Xt follows

a standard di¤usion process, such as

Xt =

Z t

0

au du+

Z t

0

�u dWu ; (2)
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where Wu is standard Brownian motion, and if au and �u satisfy certain regularity conditions, then

[X;X]t =

Z t

0

�2u du : (3)

In this model, which is frequently used in �nancial economics, the quadratic variation measures the integrated

variance over some time interval and is thus a natural way of measuring the ex-post variance. For most of

the discussion, and unless otherwise noted, we will maintain the assumption that the logarithm of the price

process follows the di¤usion process in equation (2). This is not crucial to the analysis in the paper, but

it facilitates the exposition of the theoretical concepts outlined below. In Section 2.5 below, we discuss the

e¤ects of adding a jump component to equation (2).

Suppose the log-price processXt is sampled at �xed intervals � over some time period [0; t]. Let n = bt=�c.

The realized variance, given by

RVt =

nX
j=1

�
Xj� �X(j�1)�

�2
; (4)

is a natural estimator of the quadratic variation over the interval [0; t]. In practice, we usually consider

the integrated volatility, which is the square root of the integrated variance, and the corresponding realized

volatility, which is obtained by taking the square root of RVt.

The properties of RVt have been analyzed extensively in the econometrics literature.2 In particular, it has

been shown that under very weak conditions realized variance is a consistent estimator of quadratic variation.

That is, for a �xed time interval [0; t], RVt !p QVt as � # 0. In addition, if Xt satis�es equation (2), the

limiting distribution of RVt is mixed normal and is centered on QVt:

p
n(RVt �QVt))MN(0; 2Qt) ; (5)

where Qt =
R t
0
�4u du is called the quarticity of Xt.

2.2 Market microstructure noise

According to the asymptotic result in equation (5), it is preferable to sample Xt as frequently as possible

in order to achieve more precise estimates of the quadratic variation. However, in practice, price changes in

�nancial assets sampled at very high frequencies are subject to market frictions� such as the bid-ask bounce

and the price impact of trades� in addition to reacting to more fundamental changes in the value of the

2The asymptotic properties of realized volatility and other related estimators have been primarily developed in a series of
papers by Barndor¤-Nielsen and Shephard (e.g., 2001, 2002ab, 2003, 2004ab, 2006). Other important contributions include, for
instance, Andersen, Bollerslev, Diebold, and Labys (2001, 2003). A survey of this literature is given in Barndor¤-Nielsen and
Shephard (2005).
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asset. Suppose the observed price Xt can be decomposed as

Xt = Yt + Ut; (6)

where Yt is the so-called latent price process and Ut represents market microstructure noise. The object of

interest is now the quadratic variation of the unobserved process Yt, which is assumed to satisfy the di¤usion

given by equation (2). A standard assumption is that Ut is a white noise process, independent of Yt, with

mean zero and constant variance !2. Now, as �, the length of sampling intervals, goes to zero, the squared

increments in Xt will be dominated by the changes in Ut. This follows because the increments in Yt are of

order Op(
p
�) under equation (2), whereas the increments in Ut are of order Op(1) regardless of sampling

frequency. Calculating the realized variance using extremely high frequency (such as second-by-second)

returns from the observed price process Xt will therefore result in a biased and inconsistent estimate of the

quadratic variation of the latent price process Yt.

2.3 Optimal choice of sampling frequency

The initial reaction to this problem was simply to sample at frequencies for which market frictions are

believed not to play a signi�cant role. Even with this limitation, daily volatility estimates can be obtained

with some precision. In particular, sampling prices and returns at the �ve-minute frequency appears to have

emerged as a popular choice to compute daily-frequency estimates of volatility. In order to formalize this line

of reasoning, Bandi and Russell (2006b) derive an optimal sampling frequency rule for the standard realized

variance estimator.3 Their rule is based on a function of the signal-to-noise ratio between the innovations

to the latent price process and the noise process. Their key assumption is that by sampling at the highest

possible frequency, it may be possible to obtain a consistent estimate of the variance of the noise, !2. For

example, let �1 sec denote the one-second sampling frequency, which is the highest possible in our data, and

let n1 sec denote the number of non-zero one-second returns during the day; i.e., n1 sec counts the number of

one-second periods during the whole day for which there is actual market activity that moves the price. An

estimator of !2 is now given by

!̂2 =
1

2n1 sec

n1 secX
j=1

�
Xj�1 sec �X(j�1)�1 sec

�2
; (7)

3Aït-Sahalia et al. (2005) study optimal sampling frequency rules that are similar to that given by Bandi and Russell (2006b).
Based on the market microstructure model of Roll (1984), they suggest that the variance of the market microstructure noise can
be calculated from the bid-ask spread in the data. In particular, if s is the bid-ask spread in the market (expressed in percent of
the price), then !2 = s2=4. However, as Aït-Sahalia et al. (2005) point out, by estimating !2 strictly from the bid-ask spread,
the contributions of any other sources to microstructure noise are ignored. The resulting estimate of !2 should therefore be
interpreted as a lower bound on the actual variance of the noise.
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where the summation is carried out over the n1 sec intervals with nonzero returns. By estimating !2, the

strength of the noise in the returns data can thus be measured. The strength of the signal, i.e., variations inXt

which come from the latent price process Yt, can be measured by the quarticity of that process. By relying

on data sampled at a lower frequency, such as once every ten minutes, where the market microstructure

noise should not be an issue, the quarticity of Yt can be estimated consistently (though not e¢ ciently) by

Q̂10min =
n10min

3

n10minX
j=1

�
Xj�10min �X(j�1)�10min

�4
; (8)

where n10min is the number of 10-minute intervals with non-zero returns in a day. Thus, by using returns

obtained by sampling at di¤erent frequencies, it is possible to assess the relative importance of the signal Yt

and the noise Ut. Bandi and Russell (2006b) show that an approximate rule of thumb for the optimal

sampling frequency, �opt = 1=nopt , is given by

nopt =
�
Q̂10min

.�
2!̂2�1 sec

�2�1=3
: (9)

2.4 Estimators of integrated volatility that are robust to the presence of high-

frequency market microstructure noise

The other approach to dealing with the microstructure noise issue is to design estimators that explicitly

control for and potentially even eliminate its e¤ects on volatility estimates. At the cost of some loss of sim-

plicity, this approach has the potential of extracting useful information that would otherwise be discarded if a

coarser sampling scheme is employed. A number of estimators have been proposed recently to deal with mar-

ket microstructure noise in this manner; see, for instance, Aït-Sahalia et al. (2005, 2006), Hansen and Lunde

(2006), Oomen (2005, 2006), Zhang (2006), and Zhang et al. (2005).4 While these recently-proposed estima-

tors possess several desirable properties, such as asymptotic consistency under their respective maintained

assumptions and (in some cases) asymptotic e¢ ciency as well, the actual performance of these estimators in

empirical practice remains a topic of ongoing research.

Here, we focus on an estimator proposed by Barndor¤-Nielsen, Hansen, Lunde, and Shephard (2006),

hereafter BNHLS. De�ne the realized autocovariation process


h (X�) = (1� h�)�1
nX

j=h+1

�
Xj� �X(j�1)�

� �
X(j�h)� �X(j�h�1)�

�
; (10)

4Related studies include Andersen, Bollerslev, Diebold, and Ebens (2001) and Zhou (1996). Bandi and Russell (2006a) and
Barndor¤-Nielsen and Shephard (2005) provide surveys.
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for h � 0, where the term (1 � h�)�1 is a small-sample correction factor. The realized kernel estimator in

BNHLS is given by

eKt (X�) = 
0 (X�) +
HX
h=1

k
�h� 1
H

��

h (X�) + 
�h (X�)

�
; (11)

for some kernel function k(�) satisfying k(0) = 1 and k(1) = 0 and for a suitably chosen lag truncation or

bandwidth parameter H.5 The �rst term in equation (11), 
0 (X�), is identical to the standard realized

variance estimator; the second term, the weighted sum of autocovariances up to order H, can thus be viewed

as a correction term which aims to eliminate the serial dependence in returns induced by microstructure noise.

The estimator given in equation (11) is obviously a natural analogue of the well-known heteroskedasticity

and autocorrelation consistent (HAC) estimators of long-run variances in more typical econometric settings.

Apart from realized kernel estimators, so-called subsampling estimators (e.g., Zhang et al., 2005) have

also been proposed to correct for the e¤ects of market microstructure noise. Subsampling estimators are, in

fact, very closely related to realized kernel estimators; see Aït-Sahalia et al. (2006), BNHLS, as well as the

discussion of the quadratic form representation in Andersen et al. (2006). To keep the empirical exposition

below more manageable, we chose to focus only on the kernel approach in this paper. We leave to future

research an explicit comparison of the relative performance of kernel estimators and subsampling estimators

for the two time series we consider in this paper.

2.5 Absolute power and bipower variation methods

Any estimator that is based on squared values of observations will, to some extent, be sensitive to the

occurrence of outliers in the data in general, and, within the framework of �nancial models, to jumps in

asset prices in particular. In the tradition of robust econometric estimation, absolute-value versions of the

realized variance estimator have therefore been considered. Barndor¤-Nielsen and Shephard (2004b) consider

the following normalized versions of realized absolute variation and realized bipower variation. They set

RAVt = �
�1
1 n�1=2

nX
j=1

��Xj� �X(j�1)��� (12)

and

RBVt = �
�2
1 (1� �)�1

nX
j=2

��Xj� �X(j�1)��� ��X(j�1)� �X(j�2)��� ; (13)

5 In our empirical work, we rely exclusively on the Modi�ed Tukey-Hanning kernel de�ned in BNHLS, which additionally
satis�es k0(0) = k0(1) = 0 and is asymptotically the most e¢ cient of the kernels considered by them. The Modi�ed Tukey-
Hanning kernel function is given by k(x) = (1�cos(�(1�x))2)=2, x 2 [0; 1]. The bandwidth parameter H is set equal to ĉ n1=2,
where ĉ is a constant given in BNHLS. In the case when all (or almost all) available data are used, i.e., when the data sampled
at or close to the highest available frequency, BNHLS recommend using H = ĉ n2=3; we will rely on this bandwidth choice for
sampling intervals shorter than 30 seconds.
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where �1 = E jZj =
p
2=� � 0:798 and Z is a standard normal random variable. In contrast to the de�nitions

of the realized variance and realized bipower estimators, it is necessary to use a scaling factor, n�1=2, in

equation (12) so that RAVt converges to a proper limit as n!1. The term (1� �)�1 in equation (13) is a

small-sample correction factor.

In the absence of market microstructure noise and assuming that equation (2) holds, Barndor¤-Nielsen

and Shephard (2004b) show that RAVt and RBVt, respectively, are consistent estimators of the quantitiesR t
0
�u du and

R t
0
�2u du. Hence, realized bipower variation provides an alternative estimator of the integrated

variance of Xt. The usefulness of realized bipower variation stems from the fact that it has been shown

to provide a consistent estimator of
R t
0
�2u du under much more general conditions than realized squared

variation does. In particular, suppose that Xt exhibits jump shocks as well as di¤usive innovations, such

that

Xt =

Z t

0

au du+

Z t

0

�u dWu +

NtX
j=1

cj : (14)

The process Nt is a jump counting process, which is assumed to be �nite for all t, and the coe¢ cients cj are

the sizes of the associated jumps.6 The quadratic variation of Xt is now given by

[X;X]t =

Z t

0

�2u du+

NtX
j=1

c2j ; (15)

and the realized variation converges to this term as � # 0. However, the realized absolute variation and the

realized bipower variation are still consistent estimators of
R t
0
�u du and

R t
0
�2u du, respectively. By calculating

both the realized variation and the realized bipower variation of Xt, one can separate the total quadratic

variation into its continuous and jump components. This is useful, for instance, in volatility forecasting,

because the jump component of the total quadratic variation is, in general, far less persistent than the

di¤usive component (Andersen et al., 2005).

Even though the limit of the realized absolute variation,
R t
0
�u du, has no direct use in most �nancial

applications, such as the pricing of options, Forsberg and Ghysels (2006) and Ghysels et al. (2006) report that

it is, empirically, a very useful predictor of future quadratic variation. Since predicting future volatility is often

the ultimate goal, we therefore also discuss in our paper how often to sample when estimating the absolute

variation of the returns to a �nancial time series that is obtained from deep and liquid markets; in particular,

we examine how estimates of realized absolute variation may be a¤ected by market microstructure noise in

such markets. So far, there has been little work aimed at dealing with the presence of market microstructure

6Equation (2) is thus a special case of (14), with Nt � 0 or, equivalently, cj � 0 for all j. The assumption that Nt is �nite for
all t rules out certain processes, such as stable-Lévy processes. Stable-Lévy processes are characterized by an in�nite number of
jumps in any time interval. See Calvet and Fisher (2002) for an overview of the theory and empirical evidence of multifractal
asset returns in �nance; multifractal processes are also characterized by an uncountable number of jumps.
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noise when calculating realized absolute and bipower variation. The only attempt that we are aware of is

a paper by Andersen et al. (2005). They suggest using staggered, or skip-one, returns to mitigate spurious

autocorrelations in the returns that may occur due to microstructure-induced noise. That is, they suggest

using the following modi�ed version of equation (13),

RBV1;t = �
�2
1 (1� 2�)�1

nX
j=3

��Xj� �X(j�1)��� ��X(j�2)� �X(j�3)��� : (16)

3 The data

3.1 The foreign exchange data

We analyze high-frequency spot dollar/euro exchange rate data from EBS (Electronic Broking System)

spanning January through December 2005. EBS operates an electronic limit order book system used by

virtually all foreign exchange dealers across the globe to trade in several major currency pairs. Since the

late 1990s, inter-dealer trading in the spot dollar/euro exchange rate, the most-traded currency pair, has,

on a global basis, become heavily concentrated on EBS. As a result, over our sample period EBS processed

a clear majority of the world�s inter-dealer transactions in spot dollar/euro. Publicly available estimates of

EBS�s share of global trading volume in 2005 range from 60% to 90%, and prices on the EBS system were

the reference prices used by all dealers to generate FX derivatives prices and spot prices for their customers.

Further details on the EBS trading system and the data can be found in Chaboud et al. (2004) and Berger

et al. (2005).

The exchange rate data we use are the midpoints of the highest bid and lowest ask quotes in the EBS

limit-order book at the top of each second. The exchange rate is expressed as dollars per euro, the market

convention. The source of the data is the EBS second-by-second ticker, which is provided to EBS�s clients

to generate customer quotes and as input for algorithmic trading. These quotes are executable, not just

indicative, and they therefore represent a true price series. We consider 5 full 24-hour trading days per week,

each one beginning at 17:00 New York time;7 trading occurs around the clock on EBS on those days. We

exclude all data collected from Friday 17:00 New York time to Sunday 17:00 New York time from our sample,

as trading activity during weekend hours is minimal and is not encouraged by the foreign exchange trading

community. We also drop several holidays and days of unusually light trading activity near these holidays

in 2005: January 3, Good Friday and Easter Monday, Memorial Day, July 4, Labor Day, Thanksgiving and

the following day, December 24�26, and December 30. Similar conventions on holidays have been used in

7 In the FX market, by global convention, the value date changes at 17:00 New York time (whether or not Daylight Saving
time is in e¤ect). This cuto¤ thus represents the threshold between two trading days.
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other research on foreign exchange markets, such as by Andersen, Bollerslev, Diebold, and Vega (2003). The

resulting number of business days is 251. In the analysis undertaken for this paper, we drop an additional

5 days in order to line up the FX trading days with those in the U.S. bond market, where some additional

days are treated as holidays, as described below.

Table 1 presents some summary statistics for dollar/euro returns sampled at 24-hour and 5-minute

intervals, where returns are calculated as log-di¤erences of the dollar/euro exchange rate. The mean 24-hour

return is about �5 basis points (= �0:05 percent). The standard deviation of the daily returns in 2005 was

about 56 basis points (0.56 percent). At the 5-minute frequency, the mean return is, of course, very near

zero. In 2005, returns at the 5-minute frequency had a standard deviation of about 3 basis points, and they

were extremely leptokurtic.

3.2 The bond data

We analyze high-frequency ten-year on-the-run Treasury cash market data from BrokerTec, also spanning

January through December 2005. In the last few years, BrokerTec has become one of the two leading

electronic brokers for inter-dealer trading in Treasury securities.8 Estimates of BrokerTec�s share of trading

in on-the-run Treasury securities in 2005 range from 40 percent to 70 percent. BrokerTec operates an

electronic limit order book in which traders can enter bid or o¤er limit orders (or both) and can also place

market orders, similar to EBS.9 We refer our readers to Fleming (2007), Fleming and Rosenberg (2007),

and Mizrach and Neely (2006) for discussions of several recent trends in the institutional aspects of trading

in U.S. Treasuries. These authors also examine historical factors that underlie the current dominance of

electronic trading systems for transacting in on-the-run U.S. Treasury securities.

The ten-year Treasury price data that we use are the mid-point of the highest bid and lowest ask quotes

at the top of each second. As in the EBS data, the BrokerTec quotes are executable, not just indicative,

and they therefore constitute a true price series. Unlike the EBS data, however, we focus on �ve 8-hour-long

trading days per week, from 08:00 New York time to 16:00 New York time. BrokerTec operates (nearly)

continuously on �ve days each week, from 19:00 New York time to 17:30 New York time, with Monday

trading actually beginning on Sunday evening New York time. However, unlike trading in dollar/euro, the

vast majority of trading in Treasury securities occurs during New York business hours (Fleming, 1997), and

for this reason we limit our analysis to the 08:00 to 16:00 New York time frame. We excluded the same

holidays and days of extremely light activity from our sample that we excluded from our EBS data. We also

8The other leading electronic communication network (ECN) for trading in U.S. Treasuries is eSpeed.
9Brokertec and EBS have both been acquired by ICAP in recent years. BrokerTec was acquired in 2003, EBS in 2006.
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dropped a few additional days, which the U.S. Bond Market Association declared to be market holidays,

from the sample.10 The total number of business days retained for the bond data is 246.

Table 2 presents some summary statistics for bond returns sampled at 24-hour and 5-minute intervals,

where the bond returns are calculated as log di¤erences of the price of the ten-year on-the-run Treasury

note. Daily returns are measured from 16:00 New York time readings. The mean daily price return is about

-0.7 basis point (-0.007 percent), as the ten-year Treasury yield changed little on net in 2005. The standard

deviation of daily bond returns was about 38 basis points in 2005.11 Returns at the �ve-minute frequency

have a standard deviation of about 3 basis points, and they are also very leptokurtic.

3.3 Range of sample interval lengths and the prevalence of zero-return intervals

The highest available sampling frequency in our datasets is once every second, by construction. In order

to have a reasonably large number of samples within each trading day at each frequency we consider, we

set the longest sampling interval equal to 30 minutes (1,800 seconds) for the FX returns and to 15 minutes

(900 seconds) for bond returns, resulting in within-day sample sizes of 48 and 32, respectively, at the lowest

sampling frequencies.

A large fraction of the observed high-frequency returns in both markets under study is equal to zero. A

zero return during a given sampling interval can occur either because the price changes during the sampling

interval but then returns to its initial level before the interval ends or� much more commonly� because

the price does not change at all. Table 3 presents the fraction of sampling intervals with zero returns in

both markets, for sampling interval lengths ranging from 1 second to 10 minutes. At the 1-second sampling

frequency, about 90 percent of all returns are zero in both series, although the fraction of zero returns is

slightly higher for the bond data. At the 1-minute sampling frequency, 45 percent of all bond returns are

zero and 26 percent of all exchange rate returns are zero.

Later in this paper, we consider in detail the consequences of the prevalence of sampling intervals with

zero returns on the optimal selection of the sampling frequency and on the estimation of integrated volatility

using absolute and bipower variation methods.

10There are also several days in the sample for which the Bond Market Association recommended a 14:00 closing time. We
account for these days in our calculations of realized volatilities by limiting the day to 08:00 to 14:00 New York time and scaling
the estimated volatilities appropriately.
11As a rule of thumb, in the present case a 1-percent change in the price of the bond corresponds to about a 13 basis point

change in the yield.

12



3.4 U.S. macroeconomic data releases

The impact of scheduled U.S. macroeconomic data releases on the level and volatility of foreign exchange

and bond prices has been well documented (e.g., Andersen, Bollerslev, Diebold and Vega, 2003, for foreign

exchange, and Fleming and Remolona, 1999, and Balduzzi, Elton, and Green, 2001, for Treasury securi-

ties). In parts of the empirical analysis below, we split the full sample into days with certain major U.S.

macroeconomic announcements, selected because of their apparent impact on asset prices, and days without

announcements. Our chosen monthly scheduled macroeconomic announcements are the employment report

(non-farm payrolls and the rate of unemployment), the consumer price index, the producer price index, retail

sales, and orders for durable goods. We also select the three quarterly GDP releases (advance, preliminary,

�nal), each released quarterly, and the eight FOMC announcements in 2005. With the exception of the

FOMC announcements, which are released at about 14:15 New York time, all announcements considered

here are released at 8:30 New York time. Accounting for multiple announcements that occurred on some days

in 2005, this gives us a subsample size of 62 days.12 We treat these days as announcement days irrespective

of whether the actual data released di¤ered from published market expectations or not.

4 Results for the standard estimator of integrated volatility

4.1 Overview

Figures 1A and 1B show the 2005 time series of daily estimates of the integrated volatility of FX returns and

bond returns, based on the standard realized volatility estimator.13 Several conclusions may readily be drawn

from these plots. First, for both series there is considerable dispersion in volatility across adjacent days.

Second, in 2005 neither volatility series displays a discernible time trend or seasonality pattern, indicating

that it may be meaningful to compute (suitably de�ned) averages in order to study general relationships

between sampling frequency and realized volatility. Third, volatility is clearly higher, on average, on days

with scheduled major U.S. macroeconomic news announcements, depicted by solid circles in both plots, than

on non-announcement days, shown as open squares. This is particularly� but certainly not surprisingly�

true for the bond return volatility estimates shown in Figure 1B.

A volatility signature plot, by common convention, graphs sampling frequencies on the horizontal axis

and the associated estimates of realized volatility on the vertical axis. Such plots, which appear to have

12Hence, the number of non-announcement days in the full sample is 184.
13These realized volatilities are not computed for a single sampling interval of, say, 5 minutes. Instead, they are the averages

of 9 separate volatility estimates, obtained from returns for sample lengths of 4 minutes, 4�15", 4�30", : : :, 5�45", and 6 minutes.
We elected to show these averaged realized volatility estimates because, as we demonstrate in greater detail later, on any given
day these estimates can vary considerably even across closely-spaced sampling frequencies.
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been �rst used in the context of realized volatility estimation by Andersen et al. (2000), are now used

frequently in empirical research on this subject, as they provide an intuitive visual tool for the analysis

of the relationships between these two variables. Quite often, it is possible to discern from a volatility

signature plot a sampling frequency, which we label the critical sampling frequency, that serves to separate

su¢ ciently-low frequencies (longer sample intervals), for which market microstructure noise does not seem

to a¤ect estimates of integrated volatility, from the higher frequencies (shorter sample intervals), for which

market microstructure noise does appear to have an e¤ect. We make extensive use of volatility signature

plots in our paper. Because of the need to display a very wide range of sampling frequencies in this paper, and

because our focus is on the empirical e¤ects of market microstructure noise� which are generally thought to

be present in returns only at the higher sampling frequencies� we display the signature plots using a base-2

logarithmic scale on the horizontal axis rather than the standard, i.e., linear scale. The use of a logarithmic

scale, by design, gives much more visual prominence to any changes in volatility for the shorter-length

sampling intervals (higher sampling frequencies).

We note that the shapes of the daily volatility signature plots can vary considerably across days. Fig-

ures 2A, 2B, and 2C show signature plots for FX volatility for three days in 2005: October 3, an average

volatility day; July 21, a day of very high volatility;14 and October 18, a day of slightly below-average volatil-

ity. It is immediately apparent that these signature plots di¤er not only in the ranges of their vertical scales

but also in their shapes. On October 3 (Figure 2A), realized volatility decreases at �rst as the sampling

interval lengths increase from 1 second to about 15 or 20 seconds, and then shows no further overall trend

but a rapidly increasing dispersion as the lengths of the sampling intervals increase further all the way out

to 30 minutes (1,800 seconds). On July 21, in contrast, the plot line at �rst declines slightly as the sampling

interval length rises from 1 second to 3 seconds, but then increases on average (and also becomes much more

dispersed) as the interval lengths increase further. Yet another pattern prevailed on October 18: the realized

volatility at �rst decreases nearly monotonically as the sampling interval lengths rise from 1 second to about

20 seconds, then is roughly constant as the interval lengths increase to about 4 minutes (240 seconds), and

declines once again as the interval lengths rise even more.

Considerable variation in the shape of the dependence of realized volatility on sampling frequency is also

evident for bond returns for these three days. On October 3 (Figure 3A), the plot line at �rst decreases

steadily up to a sample length of about 30 seconds, and then becomes quite dispersed for longer sampling

intervals. Even though July 21 was not a day with a scheduled major macroeconomic news release, as de�ned

in section 3.4, it was a day with far-above average volatility in bond markets as well, in part because of some

14On July 21, 2005, after close of business in China but before the start of the business day in North America, the Chinese
authorities revalued their currency, the renminbi, by 2.1 percent against the U.S. dollar. On that day, foreign exchange market
volatility was quite elevated in most major currency pairs.
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spillover from the busy day in FX markets, but also because former Federal Reserve Chairman Greenspan

presented a part of the FOMC�s semiannual monetary policy report that day. For this day (Figure 3B),

realized volatility declines (almost) monotonically as the sample length increases. Finally, on October 18

(Figure 3C), the plot line at �rst declines sharply until returns are sampled every 30 seconds or so, and

settles into a wide range of estimated volatilities for longer sampling intervals.

4.2 The dependence of realized volatility on the sampling frequency

As we noted in the discussion of Figure 1, the realized volatility of FX and bond returns is higher on average

on days with scheduled major U.S. macroeconomic news announcements. This result is especially evident

when one averages the volatility estimates over time, i.e., if the volatility signature curves are averaged

separately for announcement days and non-announcement days.

Figure 4A shows the e¤ect of averaging within each of these two types of days on the relationship between

sampling frequency and realized volatility for dollar/euro returns. The plot highlights the stylized fact that

if a day falls into the subset of announcement days, realized volatility is elevated relative to the subset of

non-announcement days. In addition, the �gure also shows that, on average, estimates of realized volatility

on non-announcement days are quite insensitive to the choice of sampling interval length, at least as long as

it falls into a range from about 20 seconds to about 10 minutes. In contrast, for sampling intervals shorter

than 20 seconds, the estimates of integrated volatility are noticeably higher, and they increase progressively

as the interval lengths decrease. This suggests that whereas market microstructure noise is present and

a¤ects realized volatility at the very highest sampling frequencies, it does not have a noticeable e¤ect on

realized volatility for sampling frequencies lower than once every 20 seconds. This same general �nding also

applies for the subset of days with major scheduled economic announcements: realized volatility increases

markedly if returns are sampled more often than once every 15 seconds.15 Note that for the case of FX

returns, the critical sampling frequencies, i.e., the frequencies above which market microstructure noise has

an increasingly important impact on realized volatility, are roughly the same in the two subsamples.

Figure 4B shows the time-averaged signature plots of bond returns for announcement days and for non-

announcement days. One notes immediately that, for any given sampling frequency, integrated volatility

is much higher on announcement days than it is on non-announcement days. In addition, it appears that,

on average, the contribution of market microstructure noise to realized volatility is considerably larger for

bond returns, as the slopes of the (time-averaged) signature plots are steeper at the very highest sampling

15We also observe that, in contrast to the case of non-announcement days, where the plot line is virtually �at for frequencies
lower than the critical frequency, the plot line declines steadily (though only slightly) as the sampling interval length increases
beyond 15 seconds. This suggests that FX trading dynamics on announcement days in 2005 may also have been characterized
by a small amount of mean reversion at medium frequencies rather than just at the highest frequencies (as would be the case
if the dynamics were purely of the microstructure variety).
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frequencies than was the case for FX returns. Third, and of the most relevance for the purposes of our

paper, the critical sampling frequency is rather di¤erent from the FX case, for both announcement and

non-announcement days. It is in the range of once every 120 to 180 seconds on days without scheduled

major macroeconomic announcements, and about once every 40 seconds on announcement days. We infer

that even though volatility is higher on announcements days, the critical sampling frequency is at least three

times higher on announcement days than on non-announcement days. This �nding clearly suggests that

it is preferable to sample bond returns more frequently on announcement days than on non-announcement

days, in order to obtain volatility estimates that are more precise yet not a¤ected noticeably by market

microstructure noise.

To sum up, when using the standard realized volatility estimator, the signature plots suggest that it

is possible to sample FX returns as frequently as once every 20 seconds on non-announcement days (15

seconds on announcement days), and to sample bond returns as often as once every 2 to 3 minutes on non-

announcement days (once every 40 seconds on announcement days), without incurring a signi�cant penalty

in the form of an upward bias to estimated volatility. Our �ndings regarding the critical sampling frequency

for volatility estimation for FX returns are quite di¤erent from those reported by other researchers, who

have typically focused on returns to individual equities and have suggested that one should not sample more

often than once every 5 minutes or so if one wishes to avoid bias caused by market microstructure dynamics

(e.g., Andersen, Bollerslev, Diebold, and Ebens, 2001).

We have already noted that there is considerable variability in the shapes of the daily volatility signature

plots, and that some of this variability appears to be associated with the arrival of macroeconomic news. To

illustrate that there is considerable variability in the shapes of the signature plots even within the subset of

just the non-announcement days, we show the median, the �rst and third quartiles, and the 5th and 95th

percentiles of the distribution of realized volatility estimates, computed from non-announcement days only.

To simplify the exposition, we show these quantiles (see Figure 5A for FX and 5B for bonds) standardized

by the average of each day�s volatility estimates for 9 sampling frequencies in the 4 minute to 6 minute

range. For FX returns (Figure 5A), one can again note the wide array of sampling interval lengths, from

about 20 seconds to about 10 minutes, for which the median standardized volatility estimate is remarkably

insensitive to the choice of sampling frequency. The interquartile range and the 90-percent con�dence band

become increasingly wider as the sampling frequency moves away from the 4 to 6 minute range. But even at

sampling frequencies in the 4 to 6 minute range, one notes that the widths of both the interquartile range

and the 90-percent con�dence band are not close to zero. This shows that estimates of realized volatility

can be quite sensitive to the precise choice of sampling frequency even when these sampling frequencies are

very close to each other.

16



The analogous graph for bond returns, Figure 5B, is qualitatively similar to Figure 5A, but it di¤ers

from the FX case in two important ways (in addition to the already-noted narrower range of frequencies,

over which the median normalized volatility estimate is close to 1). First, at the 1-second frequency, the

median volatility estimate is more than three times larger than the 4-to-6 minute average median estimate.

Second, the con�dence intervals widen out even more quickly as the sampling intervals move away from the

4-to-6 minute range. Thus, bond return volatility estimates are not only a¤ected more strongly by market

microstructure e¤ects than FX returns are, but their heterogeneity is also far larger. We discuss some of the

consequences of these observations for applied work in Section 7.

4.3 A formal rule for choosing the optimal sampling frequency

In addition to examining volatility signature plots, one may wish to have a more formal method for estab-

lishing the critical sampling frequency. One such method is the optimal sampling rule of Bandi and Russell

(2006b), which was introduced in Section 2 and is also very similar to the rule developed by Aït-Sahalia

et al. (2005). The optimal sampling frequencies for each day of the sample, based on equation (9), are shown

in Figures 6A and 6B. The average sample interval lengths across all days in the full sample are 170 and 310

seconds, respectively, for FX returns and bond returns. Although there is a fair degree of variation from day

to day, these averages are nevertheless considerably above those we deduced from the volatility signature

plots shown in the previous section. This is especially true for the FX returns.

Signature plots are, of course, informal graphical tools which cannot by themselves deliver unambigu-

ous answers. Nevertheless, signature plots are essentially model-free and they rely on much less stringent

assumptions about the nature of the data generating process than the formal sampling rule. For example,

Bandi and Russell (2006b) assume that there are no jumps in the price process. Moreover, it is also possible

that the variance !2 of the noise term cannot be estimated su¢ ciently accurately from the returns sampled

at the second-by-second frequency, which is the highest-available frequency in both datasets. Recall that,

according to the signature plots, it may be possible to sample as often as once every 15 to 20 seconds in

the FX market without incurring a signi�cant bias caused by market microstructure features. It may well

be the case that returns sampled at the one-second frequency still contain too much signal� and hence not

enough noise� in order to be able to estimate !2 consistently; Hansen and Lunde (2006) make a similar

point. This issue may be less of a problem for the bond returns, where the signature plots had indicated

critical sampling intervals in the 2 to 3 minute range. This may explain why the results from the signature

plots and the Bandi-Russell sampling rule are somewhat closer to each other for bond returns than they are

for FX returns.
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It is interesting to note that the optimal sampling frequencies obtained using the Bandi and Russell

rule are higher, i.e., the implied sampling interval lengths are shorter, on days with scheduled major macro

announcements. This con�rms one of the �ndings we obtained from the signature plots, which is that even

though market microstructure noise is likely to be greater on announcement days (for instance, in terms of a

larger bid-ask spread), the signal is even stronger on such days, implying that returns can be sampled more

frequently on announcement days.

As was noted in Section 3.3, when returns are sampled at very high frequencies, many of the FX and

bond returns are zero because there is no price change over many of the short time intervals. Phillips and

Yu (2006a and 2006b) note that the prevalence of �at pricing over short time intervals implies that the

market microstructure noise and the unobserved e¢ cient price components of the observed price process are

negatively correlated over these periods, and that these two components may become perfectly negatively

correlated as � # 0. Put di¤erently, the maintained assumption that the market microstructure noise is

independent of the latent price process, which underlies the derivation of the Bandi and Russell rule, cannot

be strictly valid if the observed price process is discrete rather than continuous. In such a framework,

sampling at ever-higher frequencies ultimately does not even produce a consistent estimator of the variance

of the market microstructure noise. If this feature of the data is not taken into account, the Bandi and

Russell rule will tend to lead to choices of the optimal sampling interval lengths that are too large. We

interpret our empirical results as being fully consistent with this theoretical observation.

5 Kernel-based methods

5.1 Autocorrelations in high-frequency returns

The use of the realized kernel estimator of integrated volatility, described in Section 2.4 above, is motivated

along lines similar to those for heteroskedasticity and autocorrelation consistent (HAC) estimators of the

long-run variance of a time series in traditional econometrics (e.g., Newey and West, 1987). That is, by

adding autocovariance terms, an estimator is constructed which better captures the relevant �long-run�

variance in the data. Before showing our empirical results for the performance of the BHNLS realized kernel

estimator, it is therefore instructive to study the autocorrelation patterns in the high-frequency intraday

returns data to build up some intuition that will help guide the interpretation of our empirical results.

Figure 7A shows the average autocorrelation across all days in the FX returns, out to 30 lags, for data

sampled at the 1, 10, 30, and 60-second sampling frequencies. That is, for a given lag and sampling frequency,

the within-day autocorrelation in high-frequency returns is calculated for each day and is then averaged
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across all days in the sample. The corresponding results for the bond returns are shown in Figure 7B. When

sampling at the 1-second frequency, it is evident that there is some negative autocorrelation in the returns,

and that this correlation stretches out for about 10 to 15 lags, i.e., that non-zero serial dependence in 1-

second returns persists for about 10 to 15 seconds. For returns sampled at the 10-second frequency, there

is still some evidence of negative autocorrelation at the �rst 2 lags in the FX returns and in the �rst 4 to 5

lags in the bond returns. For returns sampled at the 30- and 60-second frequencies, there is little evidence

of any systematic pattern in the autocorrelations of the FX returns; for the bond returns, only the �rst two

serial correlation coe¢ cients are nonzero for these two sampling frequencies.

The autocorrelation patterns shown in Figure 7 correspond well to the �ndings using signature plots

of how often one can sample returns when using the standard realized volatility estimator. In particular,

there is little evidence of any autocorrelation in the FX data for returns sampled at frequencies lower than

once every ten seconds. The conclusion from the volatility signature plots shown above was that the critical

sampling frequency for FX returns is in the 15 to 20 second range. This �nding corresponds very well to the

fact that FX return autocorrelations are insigni�cant for time spans beyond about 20 seconds. Similarly,

because there is still a large amount of negative �rst-order autocorrelation in the one-minute bond returns,

it is not surprising that we also obtained a much lower critical sampling frequency for this asset using the

signature plot method.

Overall, the results in Figure 7 suggest that in the case of FX returns and for sampling interval lengths

shorter than 30 seconds, using kernel estimators should help reduce any bias in realized volatility estimates.

For the bond returns, the same would seem to hold for returns sampled at frequencies higher than once every

2 minutes.

5.2 Optimal bandwidth choice

The graphs in Figure 7 give some indication of how many lags one may want to include in the realized kernel

estimator in equation (11). However, they do not, by themselves, provide a simple prescription for action.

BNHLS also propose a rule for an optimal choice of the bandwidth or lag truncation parameter. They show

that, in their framework, the optimal bandwidth is a function of both the sampling frequency and a scale

parameter, ĉ, which is independent of the sampling frequency; ĉ must be estimated, and the details are given

in BNHLS. The optimal bandwidth is then given by H = ĉ n1=2, although for very high sampling frequencies

(and hence for very large values of n) BNHLS recommend setting H = ĉ n2=3. We use this latter formula for

sampling intervals shorter than 30 seconds.
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The time series of optimal bandwidths in 2005 for returns sampled at the 1-second frequency are shown

in Figure 8. For FX data (Figure 8A), the optimal bandwidths range between 4 and 7, and for bond

returns (Figure 8B), the optimal bandwidths are typically between 6 and 10. There seems to be little

systematic variation between announcement and non-announcement days. The optimal bandwidths are

roughly similar to, but usually somewhat smaller, than the number of lags for which there seems to be a

non-zero autocorrelation in the 1-second returns (Figure 7). As with any kernel estimator, the choice of the

value for the bandwidth parameter involves a bias-variance trade-o¤, with a larger value leading to a smaller

bias but also a higher variance. The optimal bandwidth choice incorporates this bias-variance trade-o¤. It

is, in general, not optimal to control for all of the autocorrelation in the data by using a very large value for

the bandwidth parameter, as doing so may induce a lot of variance into the estimator.

Calculating the optimal bandwidth parameter H for returns sampled at the 1-minute and lower frequen-

cies, we �nd that the result is always a number between 0 and 1, for both �nancial asset returns series

and for all days in the sample. Depending on whether one rounds the results up or down� recall that the

bandwidth has to be an integer� the result is thus always an optimal bandwidth of either 0 or 1 for these

lower sampling frequencies. In fact, all of the optimal bandwidths are less than 0:5, so that simple rounding

would yield 0 as the optimal number of lags in equation (11) for sampling frequencies equal to or less than

once a minute. Throughout the rest of the analysis reported in this section, the estimate for the optimal

bandwidth is always rounded up, so that at least one lag is always included in the realized kernel estimator

that incorporates the optimally chosen bandwidth for each sampling frequency.

In summary, for the very highest sampling frequencies available in our dataset, the bandwidth selection

rules of BNHLS suggest that a moderate number of lags should be included, but for lower sampling frequencies

the rule indicates that at most one lag should be included.

5.3 Signature plots for realized kernel estimates

In this section we display signature plots for 6 di¤erent choices ofH: the standard realized volatility estimator

(which corresponds to the realized kernel estimator with bandwidth zero), the realized kernel estimator with

�xed bandwidths of 1, 5, 10, and 30, and the realized kernel estimator that uses a bandwidth optimally

chosen for each sampling frequency.

As we did in Section 4 for the standard realized volatility estimator, we begin by studying the volatility

signature plots for three speci�c business days in 2005. Signature plots for FX returns on these days are

displayed in Figure 9, while signature plots for bond returns are shown in Figure 10. Figure 9A shows the

signature plot of FX returns on October 4, 2005, which was a day of average volatility. For this day, we easily
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observe the pattern that one would expect as a result of changing the bandwidth parameter. The standard

estimator, which is obtained by setting H = 0, yields nearly constant estimates of realized volatility (of

about 8.5 percent at an annualized rate) for all sampling interval lengths between about 15 seconds and

about 4 minutes; in contrast, for sampling frequencies higher than about once every 15 seconds the standard

estimator is biased upwards, and it becomes increasingly more biased as the sampling frequency increases.

For bandwidths greater than 0, the in�uence of market microstructure noise on realized volatility becomes

increasingly less pronounced, especially at the highest-available sampling frequencies. For H = 1 (the blue

short-dashed line), we �nd that one can sample as frequently as once every 5 seconds without incurring any

apparent bias in estimated volatility; setting H = 10 would allow us to sample as frequently as once every 2

seconds; and if one were to use 30 lags in the kernel estimator, there is no apparent bias even at the 1-second

sampling frequency. Using the optimal bandwidth produces a signature plot that is quite similar to the one

that results from using a �xed bandwidth equal to 1.

Our �ndings regarding the e¤ects of varying H on realized kernel estimates of volatility are very similar

for October 18, 2005, which was a low-volatility day; see Figure 9C. In contrast, for the high-volatility day

of July 21, 2005, shown in Figure 9B, it is harder to draw any �rm conclusions. On that day, using a value

of H > 1 would result in estimates of realized volatility that are actually slightly larger than those obtained

with the standard estimator, except when the sampling interval lengths are as short as 1 or 2 seconds. It is

worth noting that volatility and trading volume were both exceptionally high on that day, and hence it may

not even be necessary to employ a kernel-based correction for this speci�c day in order to obtain a low-bias

estimate of volatility.

The results for the bond returns on the same three dates are overall quite similar to those for FX returns,

but there are also some striking di¤erences. In Figure 10A, for the medium-volatility day of October 5,

2005, we see a pattern that is fairly similar to the one we observed in Figure 9A for FX returns: setting

H = 1 already achieves important gains in terms of the usable critical sampling frequency, from about

once every 20 seconds to once every 4 seconds; by H = 10, one can sample as frequently as once every

second; and increasing the bandwidth further to H = 30 produces little additional gain for any of the higher

sampling frequencies of interest.16 For July 21, 2005, setting H = 1 shortens the critical sampling interval

length from about 2 minutes to about 30 seconds, and setting H = 10 or H = 30 reduces the length of this

interval further, to about 15 seconds. The patterns for the low-volatility day of October 18, 2005, shown in

Figure 10C, also suggest that setting H = 1 or H = 5 achieves signi�cant gains in terms of the achievable

critical sampling frequency, raising it to about once every 4 to 8 seconds.

16For the bond returns, kernel estimates with H = 30 are not reported for the lowest sampling frequencies, i.e. the longest
sampling intervals, since there are not enough observations available at these frequencies to form an estimate when using 30
lags.
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Figure 11 shows the signature plots of FX returns averaged separately for non-announcement days and

announcement days in 2005. As was discussed in Section 4, when using the standard realized volatility

estimator the critical sampling interval length for FX returns on non-announcement days and announcement

days, respectively, was between 15 and 20 seconds in 2005. By including just one lag in the realized kernel

estimator, the critical sampling interval length for FX returns drops to about 4 seconds (on average) on

non-announcement days. Using the optimal bandwidth selection rule of BHNLS results in a similar critical

sampling interval length. If one sets H = 10 or H = 30, even sampling at the 1-second frequency seems

admissible for the purpose of calculating realized volatility. On the subset of announcement days, shown in

the lower panel of Figure 11, setting H = 1 shortens the critical sampling interval length to about 8 seconds,

and setting H = 5 shortens this interval still further, to about 4 seconds. The results for the bond returns,

shown in Figure 12, are similar in nature to those for FX returns. Whereas the critical sampling frequency

for the standard estimator of realized volatility on non-announcement days is between once every 2 to 3

minutes, including just 1 lag in the realized kernel estimator increases the critical sampling frequency to

about once every 40 seconds on non-announcement days and once every 30 seconds on announcement days;

using 30 lags, this frequency climbs to about once every 8 seconds, on both types of days in 2005.

5.4 Implications for practical use of realized kernel estimators

The results just presented indicate that there is considerable scope for achieving much higher critical sampling

frequencies, for FX and bond returns, by using a kernel estimator rather than the standard estimator of

realized volatility, and thereby also achieving greater precision in the estimates of volatility. There is,

however, a bias-variance trade o¤ for the number of lags included in the realized kernel estimator. Thus,

even though we �nd that using 30 lags would allow us to sample at the 1-second frequency in the case of FX

returns and the 8-second frequency for bond returns, it may not be optimal to do so. Indeed, according to

the BNHLS rule, the (time-averaged) optimal bandwidth at the 1-second frequency is always much smaller

than 30. Using the optimal bandwidth, the critical sampling frequency appears to be about once every 2

to 5 seconds for FX returns, while for bond returns it is about once every 30 to 40 seconds. Unfortunately,

calculating the optimal bandwidth is fairly complicated. However, judging by the results shown in Figures 9,

10, 11, and 12, our empirical results for the kernel-based realized volatility estimator using the optimally

chosen bandwidth are very similar for those we found using the kernel estimator with a �xed lag length of 1.

Note that for H = 1 the kernel estimator has a very simple functional form, viz.

eKt (X�) = 
0 (X�) + 2
1 (X�) ; (17)
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because if H = 1 we have k(0) = 1 in equation (11). Therefore, at least for the two �nancial returns series

studied in this paper, we �nd that by augmenting the standard realized volatility estimator with just one

additional term, the critical sampling frequency can be increased considerably without giving up much in

terms of the simplicity of the calculations. This estimator is, incidentally, also identical to the noise-corrected

estimator proposed in the seminal paper of Zhou (1996).

6 Estimation of integrated volatility using absolute power and

bipower variation methods

The standard estimator of integrated volatility is potentially quite sensitive to outliers, as it is computed

from squared returns. This raises the issue of how robust estimators of volatility, which are functions of

absolute rather than squared returns, perform in practice. As discussed before, these estimators converge

to measures of the daily variation of the di¤usive, or non-jump, part of the returns process. Since much of

the di¤erence in daily volatility that was seen for announcement days relative to non-announcement days

(Figure 4), may very well stem from jumps rather than di¤usive moves in returns, it is particularly interesting

to examine how estimates of volatility di¤er between announcement and non-announcement days when the

two robust methods are used. In addition, we also study the degree to which market microstructure noise

a¤ects estimates of volatility across sampling frequencies when robust estimators are employed.

6.1 Volatility estimation using absolute variation methods

The realized absolute variation of a continuous time di¤usion process X, sampled over [0; t] at intervals �,

was introduced earlier as

RAVt = �
�1
1 n�1=2

nX
j=1

��X�j �X�(j�1)�� : (18)

The factor ��11 is needed to obtain an estimate of the mean absolute variation of Xt over [0; t],
R t
0
�u du,

under the di¤usion model (2), rather than of the average absolute return of Xt over that period.17 Because

17For a Brownian di¤usion, ��11 =
p
�=2 � 1:253. For dollar/euro returns from January 1999 to September 2006, the ratio

of the standard deviation of daily returns to the mean absolute daily return was equal to 1.31, with yearly estimates of this
ratio falling in the interval [1:27; 1:33]. For 2005, this ratio was 1.29, and it is this value, rather than ��11 , that we use in the
empirical work on the volatility of FX returns in this section; for daily-frequency returns on the 10-year Treasury note, the
corresponding ratio was 1.26 in 2005.
The returns of many �nancial time series are generally much more heavy-tailed than draws from a normal distribution are,

especially when the returns are sampled at very high frequencies. For the case of the Student-t distribution (a well-known
class of heavy-tailed distributions), the ratio of the distribution�s standard deviation to its absolute �rst moment is a function
of �, the degrees of freedom parameter. For values of � equal to 3, 5, and 10, this ratio is close to 1.57, 1.36, and 1.29,
respectively. In principle, this dependence of the conversion factor on the distribution�s tail shape parameter, and the fact that
the leptokurtosis of returns increases with the sampling frequency, both indicate that that one should use a conversion factor
that varies systematically with the sampling frequency. A full treatment of this issue is left to future research.
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a di¤usion process has unbounded absolute variation, scaling by n�1=2 is required to obtain an estimator

that converges to a proper limit as the sample size, n, increases to in�nity. Because real data are generated

discretely and not continuously, the term sample size needs to be interpreted carefully in empirical work.

When data are generated discretely, there will be time intervals during which no new data arrive and

hence returns are zero. Furthermore, the relative frequency of zero-return intervals increases as sampling

frequency rises.18 With discretely-generated data, then, one must take care not to use the theoretical sample

size, bt=�c, that corresponds to a given sampling interval length �, as more and more of the sample periods

will be characterized by zero returns as � # 0. Instead, one must use the e¤ective sample size, i.e., the number

of intervals within a day during which a transaction occurred.

We compute estimates of the daily variation based on the realized absolute variation of FX and bond

returns using the same range of sampling frequencies as in the preceding section, and we also average

separately across announcement and non-announcement days. The resulting signature plots are shown in

Figures 13A and 13B. These plots share certain similarities with the ones shown in Figures 4A and 4B,

but they also exhibit some important di¤erences. First, we �nd that the estimates of daily variation that

are based on absolute returns di¤er by less, on average, across announcement and non-announcement days

than is the case for the volatility estimates that are based on squared returns. This suggests that the jump

components of returns, which presumably are both more frequent and more pronounced on announcements

days, indeed disproportionately a¤ect the standard realized volatility estimator, as the asymptotic theory

for this estimator would predict. This e¤ect is particularly strong for FX returns (Figure 13A): volatility

estimates show little di¤erence across the two subsamples when they are computed using absolute returns.

A second important di¤erence between the signature plots for the robust estimators in Figures 13A

and 13B and those for the standard realized volatility estimator in Figures 4A and 4B lies in their response

to the variations in the sampling frequency. For both FX and bond returns, and both on announcement

days and on non-announcement days, realized volatility increases faster with the sampling frequency if it is

computed as a functions of absolute returns than as a function of squared returns. While we can not o¤er

a detailed explanation for this �nding, we conjecture that this di¤erence may o¤er important clues to the

nature of the market microstructure noise process that a¤ects returns at the very highest frequencies.

Judging from the absolute variation signature plots, the critical sampling frequency, which separates those

estimates which are a¤ected noticeably by market microstructure noise from those which are not, is about

4 to 5 minutes for both FX and bond returns, and for both announcement and non-announcement days.

18For a 24-hour (8-hour) trading day and a 1-second sampling frequency, the theoretical sample size is 86,400 (28,800). As
is shown in Table 3, on an average trading day in 2005 the e¤ective sample size for FX and bond returns at this frequency was
only 13.9 percent and 7.6 percent, respectively, as large as the theoretical sample size. We note that these numbers represent
averages across all trading days within the year. The fraction of 1-second intervals with non-zero returns within a day can vary
considerably across days.
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These estimates of the critical sampling frequencies are substantially lower, and the associated sampling

interval lengths are therefore substantially longer, than those we found when computing realized volatility

using squared returns. Exploring the causes of this pronounced di¤erence is also left to future research.

6.2 Integrated volatility estimated from bipower variation

We now turn to volatility signature plots obtained from the bipower variation of processes. As discussed in

Section 2, bipower variation is calculated from the products of adjacent absolute returns, rather than simple

squared returns, and it is therefore more robust to large outliers such as non-di¤usive jumps. Figures 14A

and 14B show the signature plots for FX and bond returns using the realized bipower variation estimator

de�ned in equation (13).19

The patterns shown in the bipower signature plots are strikingly di¤erent from those shown in the

signature plots that are based on squared or absolute returns, as the bipower-based signature plots exhibit

what appears to be a downward bias to estimated volatility at higher sampling frequencies.20 Although we

cannot rule out that market microstructure noise could account for a part of this di¤erence, the most likely

determinant of this feature is the fact that, as the sampling frequency increases, the fraction of sampling

intervals with zero returns increases as well. Because the bipower variation estimator is calculated from the

sum of the products of adjacent absolute returns, 2 consecutive non-zero returns are required to obtain a

non-zero increment to the estimate of volatility. Because the prevalence of such consecutive pairs of non-zero

returns declines sharply as the sampling frequency increases, the result is a decline in estimated volatility.21

The critical frequency, at which the signature plots indicate that it is safe to sample without incurring

a penalty from market microstructure noise, thus re�ects both the actual properties of the microstructure

noise process as well as the relative scarcity of non-zero observations at various sampling frequencies. For the

bipower-based volatility of FX returns, this frequency appears to be around 15 to 30 seconds on announcement

days and around one minute on non-announcement days. For bond returns, the critical frequencies are around

one and two minutes, respectively, on announcement and non-announcement days.

Figures 15A and 15B show the signature plots for the realized bipower variation using the skip-one returns

de�ned in equation (16). Rather than computing products of adjacent absolute returns, this estimator relies

on products of absolute returns with one sample period left out in between the terms. The intuition for this

19The volatility, rather than variance, estimates are shown, i.e., results for
p
RBVt are displayed.

20This downward bias at higher sampling frequencies is especially prominent for FX returns. It is somewhat less pronounced
for bond returns, except at the very highest sampling frequencies.
21Note that in the case of the absolute power variation method, a natural way for adjusting the estimator for changes in

the prevalence of intervals with zero returns is to adjust the sample size, i.e., to set the sample size equal to the number of
intervals with non-zero returns. No such simple adjustment is available for the estimator that is based on the bipower variation
of returns. We conjecture that, when computing the bipower variation of a discretely-generated process, a practical method for
dealing with the incidence of intervals with zero returns is to discard all samples that have zero returns prior to calculating the
bipower products.
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method is that, by �skipping over� one term, one may be able to eliminate some of the serial correlation

in returns that could be caused by market microstructure features. Unfortunately, the actual volatility

estimates we obtain using the skip-one method are not straightforward to interpret. Across most sampling

frequencies and for both FX and bond returns, estimated volatility using the skip-one bipower method

tends to be lower than if it is computed on the basis of the standard bipower estimator. This result could

be due to a successful elimination of market microstructure noise. However, we �nd that this result is

also present at longer sampling interval lengths, for which microstructure noise is thought to play a less

signi�cant role. Hence, the lower levels of the volatility estimates using the skip-one method almost certainly

also re�ect patterns in the latent e¢ cient-price component of the observed returns process. For instance,

if large absolute returns tend to cluster in practice, the skip-one estimator is likely to be biased downward

irrespective of the chosen sampling frequency.

In summary, we �nd that it is hard to assess the impact of market microstructure noise on volatility

estimated from the realized bipower variation of a process. The primary cause of this di¢ culty appears to be

the issue of zero returns in samples that are drawn from discretely generated data. Nevertheless, it is evident

that the choice of sampling frequency is important for this class of volatility estimators as well. There is

some evidence that using the skip-one estimator may help eliminate some of the noise, as suggested by the

fairly �at signature plots for bond returns in Figure 15B, but this estimator may also induce a downward

bias that depends on the conditional distribution of the e¢ cient-price component of the returns process.

Given the increasing popularity of the bipower volatility estimator, an important topic for future research

is the development of formal rules for choosing the critical or optimal sampling frequency. In addition, it

would appear to be useful to develop kernel-based or subsampling-based extensions to volatility estimators

that are based on the absolute power variation and bipower variation of the returns process.

7 Discussion

Using volatility signature plots, we have found that the critical or optimal sampling frequency, which a¤ords

estimation of integrated volatility without incurring a penalty in the form of an upward bias caused by market

microstructure noise, is considerably higher and the resulting intraday sample lengths are considerably lower,

by a factor of at least six, for FX returns than for bond returns. What are some of the� not necessarily

independent� factors that may explain this striking di¤erence? Both markets are based on electronic order

book systems, and both have achieved large market shares in their respective �elds. However, the number of

active trading terminals is considerably larger on EBS than on BrokerTec, as is the number of transactions

per day. In contrast, the average size of each transaction is lower on EBS than it is on BrokerTec, suggesting

26



that the price impact of EBS transactions may also be lower on average. In addition, the bid-ask spread in

the dollar/euro exchange rate pair is, on average, only about sixty percent the size of that of the 10-year

Treasury note. All of these factors may explain the observed di¤erences in the critical sampling frequencies.22

Judging from the volatility signature plots, the critical sampling frequencies for estimating the realized

volatility of the returns to the 10-year Treasury securities and, even more so, of the returns to the dollar/euro

pair are much higher, and the associated critical sampling interval lengths are therefore shorter, than those

reported in the empirical literature for all but the most liquid of exchange-traded shares (e.g., Bandi and

Russell, 2006b). Lower bid-ask spreads and other lower transaction costs, a smaller price impact of trades,

and the fact that the number of distinct assets traded on these two systems is quite small� which, ceteris

paribus, should raise their liquidity� are all good candidates for explaining why their critical sampling

frequencies are so much higher than those in some other �nancial markets.

Two additional �ndings reported in this paper are that there is, in general, substantial heterogeneity

in the shapes of the daily volatility signature plots and that, on any given day, the realized volatilities

computed from adjacent sampling frequencies can di¤er considerably from each other. A related �nding, we

believe, is that the sampling interval lengths chosen by the rules proposed by Bandi and Russell (2006b)

and Aït-Sahalia et al. (2005) are generally considerably longer than those that would be chosen visually,

i.e., on the basis of the signature plots. We conjecture that a key to interpreting these �ndings is to recall

that �nancial returns� and especially those sampled at very high frequencies� tend to be very leptokurtic.

Empirically, returns that occur during possibly just a handful of intraday periods may make disproportionate

contributions to estimates of realized volatility, and these contributions can depend strongly on the precise

choice of sampling frequency. The heterogeneity in the shapes of the daily signature volatility plots may also

be a byproduct of the high kurtosis present in high-frequency data. We suggest that one of the practical uses

of computing realized volatility via robust methods� such as those that are based on the absolute power,

bipower, and multipower variation of returns� may be to shed more light on the role leptokurtosis of returns

plays in driving the heterogeneity present in daily (squared) realized volatility signature plots.

Volatility is higher, for both of our returns series, on days with scheduled major macroeconomic data

releases and news announcements. This �nding is fully consistent with virtually all of the existing literature

on this subject; see, e.g., Fleming and Remolona (1999) for a review of the impact of economic news

in the U.S. Treasury market. The method we use to capture the impact of macro and news events on

volatility� partitioning the full sample into two subsets, based on whether a day has a scheduled major news

announcement or not� is admittedly simplistic, and it is not meant to represent a full accounting of the

22 It is also possible that the workup process on BrokerTec a¤ects bond price dynamics in a way that makes market mi-
crostructure noise persist longer than in FX markets. BrokerTec has recently changed the mechanics of its workup process
signi�cantly.
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ways that news and data a¤ect �nancial market returns and their volatility. For instance, there are many

days with scheduled economic news announcements� such as Chairman Greenspan�s delivery of the FOMC�s

semiannual monetary policy report on July 21, 2005� that are not captured explicitly in the econometric

work performed for this paper. In addition, there are also many unscheduled announcements� such as

the decision by Chinese government o¢ cials to revalue their currency against the dollar on July 21, 2005.

Obviously, unscheduled announcements may be every bit as important for returns and volatility as scheduled

announcements are. Clearly, an examination of the actual historical news arrival record, of the news content

(or surprise component) of scheduled announcements and data releases, and of the relative importance of

various data releases and news announcements (and any shifts over time of their relative importance), is

essential for developing a fuller understanding of the relationships between news and realized volatility.

8 Conclusion

In this paper, we use various methods to examine the dependence of estimates of realized volatility on

the sampling frequency and to determine if the data suggest that there exist critical sampling frequencies,

beyond which estimates of integrated volatility become increasingly contaminated by market microstructure

noise. We study returns on the dollar/euro exchange rate pair and on the on-the-run 10-year U.S. Treasury

security in 2005, at intraday sampling frequencies as high as once every second. We detect strong evidence

of an upward bias in estimated volatility at the very highest sampling frequencies. Time-averaged volatility

signature plots suggest that FX returns may be sampled as frequently as once every 15 to 20 seconds,

respectively, on days with and without scheduled major U.S. economic data releases and news announcements,

without the standard realized volatility estimator incurring market microstructure-induced bias. In contrast,

returns on the 10-year Treasury security should be sampled no more frequently than once every 2 to 3 minutes

on non-announcement days, and about once every 40 seconds on announcement days, if one wishes to avoid

obtaining upwardly-biased estimates of realized volatility.

If one uses realized kernel estimators, which explicitly eliminate some of the serial correlation in the returns

that is induced by market microstructure noise, the critical sampling frequencies increase even further. By

using the simplest possible realized kernel estimator, which simply adds the �rst-order autocovariance term

to the standard estimator, the critical sampling frequency for FX returns is about once every 2 to 5 seconds,

and it is about once every 30 to 40 seconds for bond returns.
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Table 1: Summary statistics for dollar/euro returns

All summary statistics expressed as basis points of the price.

Sampling Interval Length

24 Hours 5 Minutes

Mean �4:94 �0:014
Absolute mean 43:31 2:16
Standard deviation 55:71 3:30
Skewness 0:23 �0:14
Kurtosis 3:27 22:17
Minimum �139:1 �61:19
Maximum 169:8 76:26

Table 2: Summary statistics for 10-year Treasury note returns

All summary statistics expressed as basis points of the price.

Sampling Interval Length

24 Hours 5 Minutes

Mean �0:68 0:001
Absolute mean 30:20 2:05
Standard deviation 37:91 3:15
Skewness �0:24 �0:57
Kurtosis 2:87 24:09
Minimum �109:04 �55:14
Maximum 80:66 38:84

Table 3: Frequencies of zero returns in foreign exchange and Treasury note data.

Sampling Interval Length (in seconds)

1 5 15 30 60 300 600

FX 0:861 0:652 0:478 0:365 0:263 0:108 0:070
10-year T-Note 0:924 0:789 0:652 0:549 0:450 0:239 0:174
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Figure 1. Realized Volatility

A. FX Returns
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 Note: Based on average of 9 sampling intervals in the 4 -6 minute range.
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      Figure 2. FX Realized Volatility Signature Plots for 3 Specific Dates
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      Figure 3. T -Note Realized Volatility Signature Plots for 3 Specific Dates
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Figure 4. Realized Volatility Signature Plots and Announcement Effects

A. FX Returns
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Figure 5. Dispersion of Estimates of Realized Volatility

A. FX Returns
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 Note: Normalized to 4 -6 minute average = 1, non -announcement days only.
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Figure 6. Optimal Sampling Frequencies Suggested by the Bandi -Russell Method
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Figure 7. Autocorrelation Functions of Returns, Various Sampling Frequencies
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Figure 8. Optimal Choice of Bandwidth Parameter H, 1 -Second Returns
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Figure 9. Kernel -Based Realized Volatility Signature Plots

for FX Returns on 3 Specific Dates
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Figure 10. Kernel -Based Realized Volatility Signature Plots

for T -Note Returns on 3 Specific Dates
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Figure 11. FX Time -Averaged Kernel -Based Realized Volatility Signature Plots
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Figure 12. T -Note Time -Averaged Kernel -Based Realized Volatility Signature Plots
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Figure 13. Realized Absolute Variation Signature Plots
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Figure 14. Realized Bipower Variation Signature Plots
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Figure 15. Realized Bipower Variation Signature Plots, Using Skip -One Returns
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