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Abstract

Using two newly available ultrahigh-frequency datasets, we investigate empirically how frequently one

can sample certain foreign exchange and U.S. Treasury security returns without contaminating estimates

of their integrated volatility with market microstructure noise. Using the standard realized volatility

estimator, we find that one can sample dollar/euro returns as frequently as once every 15 to 20 seconds

without contaminating estimates of integrated volatility; 10-year Treasury note returns may be sampled

as frequently as once every 2 to 3 minutes on days without U.S. macroeconomic announcements, and as

frequently as once every 40 seconds on announcement days. Using a simple realized kernel estimator, this

sampling frequency can be increased to once every 2 to 5 seconds for dollar/euro returns and to about once

every 30 to 40 seconds for T-note returns. These sampling frequencies, especially in the case of dollar/euro

returns, are much higher than those that are generally recommended in the empirical literature on realized

volatility in equity markets. The higher sampling frequencies for dollar/euro and T-note returns likely

reflect the superior depth and liquidity of these markets.
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1 Introduction

Estimating the volatility of asset returns is important for many economic and financial applications, including

risk management, derivative pricing, and analyzing investment choices and policy alternatives. As Mandelbrot

(1963, p. 418) noted, volatility estimation is complicated by the fact that “large [price] changes tend to be

followed by large changes—of either sign—and small changes tend to be followed by small changes,” i.e., that

volatility tends to cluster. One approach to estimating volatility is to use a parametric framework, such as the

class of ARCH, GARCH, and stochastic volatility models. If data on returns are available at sufficiently high

frequencies, one can also estimate volatility nonparametrically by computing the realized volatility, which is the

natural estimator of the ex post integrated volatility. This nonparametric method is appealing both because

it is computationally simple and because it is a valid estimator under fairly mild statistical assumptions.

The higher the sampling frequency and thus the larger the sample size of intraday returns, the more

precise the estimates of daily integrated volatility should become. In practice, however, the presence of so-

called market microstructure features, which arise especially if the data are sampled at very high frequencies,

creates important complications. The finance literature has identified many such features. Among them are

the facts that financial transactions—and hence price changes and non-zero returns—arrive discretely rather

than continuously over time, that buyers and sellers usually face different prices (separated by the bid-ask

spread), that returns to successive transactions tend to be negatively serially correlated (due to, for instance,

the so-called bid-ask bounce), and that the initial impact of trades on prices is often at least partially reversed.1

The first aim of our paper is to study, for two specific financial assets, how the standard estimator of

integrated volatility is affected by the choice of sampling frequency and, as a result, by the bias caused by

market microstructure features. The two asset price series we study are obtained from some of the deepest and

most liquid financial markets in existence today. They are the spot exchange rate of the dollar/euro currency

pair, provided by Electronic Broking Systems (EBS), and the price of the on-the-run 10-year U.S. Treasury

note, which is traded on BrokerTec. Both of these markets are electronic order book systems, which quite

likely represent the future of wholesale financial trading systems. Both markets are strictly inter-dealer. These

markets are far larger in terms of total trading volume than markets for individual stocks, even the handful of

most liquid stocks traded on the New York Stock Exchange, and bid-ask spreads in these markets are narrower

than in typical stock markets. In 2005, the time period considered in this paper, bid-ask spreads averaged

1.04 basis points for dollar/euro spot transactions on EBS and 1.68 basis points for 10-year Treasury note

transactions on BrokerTec. Prices for both time series are available at ultra-high sampling frequencies—up to

the second-by-second frequency.
1For an overview of many of these market microstructure issues and their importance for financial theory and practice, we

refer the reader to Hasbrouck (2006), O’Hara (1995), Campbell, Lo, and MacKinlay (1997, ch. 3), as well as to Roll (1984), Harris
(1990, 1991), and Hasbrouck (1991).
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Our main hypothesis is that in such deep and liquid markets, microstructure-induced noise should pose

less of a concern for volatility estimation, in the sense that it should be possible to sample returns more

frequently than, say, returns on individual stocks before estimates of integrated volatility encounter significant

bias caused by the markets’ microstructure features. We label this sampling frequency (provided, of course,

that it exists) the critical sampling frequency. This thesis is indeed borne out by our empirical results. Using

volatility signature plots, we find that the critical sampling interval lengths for dollar/euro returns are as short

as 15 to 20 seconds. The corresponding critical sampling interval lengths for returns on 10-year Treasury notes

are between 2 and 3 minutes. These intervals are considerably shorter than the sampling intervals of several

minutes—usually five or more minutes—that have often been recommended in the empirical literature on

estimating integrated volatility for a number of other financial markets. The shorter critical sampling intervals

and the associated larger sample sizes afford a considerable gain in the precision with which the integrated

volatility of returns may be estimated. We conclude that in very deep and liquid markets, microstructure-

induced frictions may be much less of an issue for integrated volatility estimation than was previously thought.

We also analyze whether the presence or absence of scheduled U.S. macroeconomic news announcements

influences the precision with which the integrated volatility of asset returns may be estimated. While con-

firming the results of several previous empirical studies that integrated volatility is systematically higher on

announcement days than on non-announcement days, we find that the critical sampling frequency is also sys-

tematically higher on announcement days. We interpret this finding as an indication that the higher trading

volumes that occur on announcement days, an especially prominent feature in the U.S. Treasury bills and

notes markets, help reduce some of the frictions caused by market microstructure features, raising the critical

sampling frequencies and hence allowing greater estimation precision.

Although the critical sampling frequencies are already very high for both time series we consider in this

paper, we find that it is possible to further increase these critical sampling frequencies by using so-called kernel

estimators, which are designed explicitly to control for the effects of market microstructure noise. We find that

by using a very simple version of a kernel estimator, it is possible to sample dollar/euro returns at frequencies

as high as once every 2 to 5 seconds, and that T-note returns can be sampled as frequently as once every 30 to

40 seconds without incurring noticeable bias generated by market microstructure noise. This kernel estimator,

which is almost as easy to compute as the standard realized volatility estimator, therefore offers substantial

additional gains in terms of both how frequently one can sample on an intraday basis and the accuracy with

which integrated volatility may be estimated.

Finally, we also examine how certain robust estimators of integrated volatility perform for the two time

series at hand. These alternative estimators are not based on functions of the standard quadratic variation

process, but instead on functions of absolute variation and bipower variation processes. A reason for con-
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sidering such methods is that they are, by construction, more robust than the standard estimator to outlier

activity (heavy tails) in the data; such “outliers” are frequently generated by discontinuities or jumps in the

time series of financial asset prices. In general, these estimators measure somewhat different (but highly rele-

vant) aspects of daily variation than does the standard realized volatility estimator. We find empirically that

these alternative methods are indeed more robust than the standard estimator to the presence of jumps. For

instance, the volatility estimates show less dispersion across announcement and non-announcement days than

do estimates that are based on squared variation. However, we find no evidence that these robust methods

are also less sensitive than the standard estimator to bias imparted by market microstructure noise. To the

contrary, our results indicate that one should typically sample less frequently when using the absolute-variation

base estimator, relative to the critical sampling frequency we found for the standard volatility estimator.

The remainder of our paper is organized as follows. Section 2 provides some motivation for the use of

the standard estimator of integrated volatility, which is based on the quadratic variation of returns. The

section also details how market microstructure noise may cause bias in the standard estimator, provides an

introduction to kernel-based estimators designed to circumvent this problem, and sets out the use of estimators

based on absolute and bipower variation processes. Section 3 provides an overview of the characteristics of

the foreign exchange (FX) and bond market data used in our empirical work. Section 4 provides the empirical

results for the standard estimator of realized volatility, using both volatility signature plots and the Aı̈t-Sahalia,

Mykland, and Zhang (2005) and Bandi and Russell (2006) rule for choosing sampling frequencies. Section 5

shows the results from the realized kernel estimators. Section 6 provides the estimation results for the robust

estimators of realized volatility, such as the one that is based on the absolute variation process. Section 7

provides a discussion of some broader issues raised by our empirical findings, and Section 8 concludes.

2 Motivation and estimation techniques

2.1 Motivation

The fundamental idea behind the use of realized volatility is that quadratic variation can be used as a measure

of ex-post variance in a diffusion process. The quadratic variation QVt of a process Xt is defined as

QVt = [X,X]t = plim
n→∞

n∑
j=1

(
Xtj −Xtj−1

)2
, (1)

for any sequence of deterministic partitions 0 = t0 < t1 < · · · < tn = t with supj |tj − tj−1| ↓ 0 as n→∞; see,

for instance, Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard (2004a).
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If Xt follows a standard diffusion process, such as

Xt =
∫ t

0

au du+
∫ t

0

σu dWu , (2)

where Wu is standard-scale Brownian motion, and if au and σu satisfy certain regularity conditions, then

[X,X]t =
∫ t

0

σ2
u du . (3)

In this model, which is frequently used in financial economics, the quadratic variation measures the in-

tegrated variance over some time interval and is thus a natural way of measuring the ex-post variance. For

most of the discussion, and unless otherwise noted, we will maintain the assumption that the logarithm of the

price process follows the diffusion process in equation (2). This is not crucial to the analysis in the paper,

but it facilitates the exposition of the theoretical concepts outlined below. In Section 2.5 below, we discuss

the effects of adding a jump component to equation (2). Suppose the log-price process Xt is sampled at fixed

intervals δ over some time period [0, t]. Let n = bt/δc. The realized variance, given by

RVt =
n∑
j=1

(
Xjδ −X(j−1)δ

)2
, (4)

is a natural estimator of the quadratic variation over the interval [0, t]. In practice, we usually consider

the integrated volatility, which is the square root of the integrated variance, and the corresponding realized

volatility, which is obtained by taking the square root of RVt.

The properties of RVt have been analyzed extensively in the econometrics literature.2 In particular, it has

been shown that under very weak conditions realized variance is a consistent estimator of quadratic variation.

That is, for a fixed time interval [0, t], RVt →p QVt as δ ↓ 0. In addition, if Xt satisfies equation (2), the

limiting distribution of RVt is mixed normal and is centered on QVt:

√
n(RVt −QVt)⇒MN(0, 2Qt) , (5)

where Qt =
∫ t
0
σ4
u du is called the quarticity of Xt.

2The asymptotic properties of realized volatility and other related estimators have been primarily developed in a series of
papers by Barndorff-Nielsen and Shephard (e.g., 2001, 2002a, 2002b, 2003, 2004a, 2004b, 2006a). Other important contributions
include Andersen, Bollerslev, Diebold, and Labys (2001, 2003) and, more recently, Bandi and Russell (2008). Surveys of this
literature are given in Barndorff-Nielsen and Shephard (2007) and McAleer and Medeiros (2008). Hansen and Horel (2009) have
recently proposed a novel estimator of quadratic variation that does not rely on the continuous-time semimartingale assumption
for its justification or derivation.
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2.2 Market microstructure noise

According to the asymptotic result in equation (5), it is preferable to sample Xt as frequently as possible

in order to achieve more precise estimates of the quadratic variation. In practice, however, price changes in

financial assets sampled at very high frequencies are subject to market frictions—such as the bid-ask bounce

and the price impact of trades—in addition to reacting to more fundamental changes in the value of the asset.

Suppose the observed price Xt can be decomposed as

Xt = Yt + Ut, (6)

where Yt is the so-called latent price process and Ut represents market microstructure noise. The object of

interest is now the quadratic variation of the unobserved process Yt, which is assumed to satisfy the diffusion

process given by equation (2). A standard assumption is that Ut is a white noise process, independent of Yt,

with mean zero and constant variance ω2. Now, as δ, the length of sampling intervals, goes to zero, the squared

increments in Xt will be dominated by the changes in Ut. This follows because the increments in Yt are of order

Op(
√
δ) under equation (2), whereas the increments in Ut are of order Op(1) regardless of sampling frequency.

Calculating the realized variance using extremely high frequency (such as second-by-second) returns from the

observed price process Xt will therefore result in a biased and inconsistent estimate of the quadratic variation

of the latent price process Yt.

2.3 Optimal choice of sampling frequency

The initial reaction to this problem was simply to sample at frequencies for which market frictions are believed

not to play a significant role. Even with this limitation, daily volatility estimates can be obtained with some

precision. In particular, sampling prices and returns at the five-minute frequency appears to have emerged

as a popular choice to compute daily-frequency estimates of volatility. In order to formalize this line of

reasoning, Bandi and Russell (2006) derive an optimal sampling frequency rule for the standard realized

variance estimator.3 Their rule is based on a function of the signal-to-noise ratio between the innovations

to the latent price process and the noise process. Their key assumption is that by sampling at the highest

possible frequency, it may be possible to obtain a consistent estimate of the variance of the noise, ω2. For

example, let δ1 sec denote the one-second sampling frequency, which is the highest possible in our data, and

let n1 sec denote the number of non-zero one-second returns during the day; i.e., n1 sec counts the number of
3Aı̈t-Sahalia, Mykland, and Zhang (2005) study optimal sampling frequency rules that are similar to that given by Bandi and

Russell (2006). Based on the model originally proposed by Roll (1984) and extended by French and Roll (1986), they suggest that
the variance of the market microstructure noise can be calculated from the bid-ask spread in the data. In particular, if s is the
bid-ask spread in the market (expressed in percent of the price), then ω2 = s2/4. However, as Aı̈t-Sahalia, Mykland, and Zhang
(2005) point out, by estimating ω2 strictly from the bid-ask spread, the contributions of any other sources to microstructure noise
are ignored. The resulting estimate of ω2 should therefore be interpreted as a lower bound on the actual variance of the noise.
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one-second periods during the whole day for which there is actual market activity that moves the price. An

estimator of ω2 is now given by

ω̂2 =
1

2n1 sec

n1 sec∑
j=1

(
Xjδ1 sec −X(j−1)δ1 sec

)2
, (7)

where the summation is carried out over the n1 sec intervals with nonzero returns.

By estimating ω2, the strength of the noise in the returns data can thus be measured. The strength of the

signal, i.e., variations in Xt which come from the latent price process Yt, can be measured by the quarticity

of that process. By relying on data sampled at a lower frequency, such as once every ten minutes, where the

market microstructure noise should not be an issue, the quarticity of Yt can be estimated consistently (though

not efficiently) by

Q̂10 min =
n10 min

3

n10 min∑
j=1

(
Xjδ10 min −X(j−1)δ10 min

)4
, (8)

where n10 min is the number of 10-minute intervals with non-zero returns in a day. Thus, by using returns

obtained by sampling at different frequencies, it is possible to assess the relative importance of the signal Yt

and the noise Ut. Bandi and Russell (2006) show that an approximate rule of thumb for the optimal sampling

frequency, δopt = 1/nopt, is given by

nopt =
(
Q̂10 min

/(
2ω̂2

δ1 sec

)2)1/3

. (9)

2.4 Estimators of integrated volatility that are robust to the presence of high-

frequency market microstructure noise

The other approach to dealing with the microstructure noise issue is to design estimators that explicitly

control for and potentially even eliminate its effects on volatility estimates. At the cost of some loss of

simplicity, this approach has the potential of extracting useful information that would otherwise be discarded

if a coarser sampling scheme is employed. A number of estimators have been proposed recently to deal with

market microstructure noise in this manner; see, for instance, Aı̈t-Sahalia, Mykland, and Zhang (2005, 2008),

Hansen and Lunde (2006), Oomen (2005, 2006), Zhang (2006), and Zhang, Mykland, and Aı̈t-Sahalia (2005).4

While these recently-proposed estimators possess several desirable properties, such as asymptotic consistency

under their respective maintained assumptions and (in some cases) asymptotic efficiency as well, the actual

performance of these estimators in empirical practice remains a topic of ongoing research.
4Related studies include Andersen, Bollerslev, Diebold, and Ebens (2001) and Zhou (1996). Bandi and Russell (2007) and

Barndorff-Nielsen and Shephard (2007) provide surveys.
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Here, we focus on a kernel-based estimator proposed by Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008), hereafter BNHLS. Although BNHLS were not the first to consider kernel estimators—earlier contri-

butions include Zhou (1996) and Hansen and Lunde (2006)—they were the first to provide a comprehensive

analysis, including results on consistency and efficiency. We therefore focus on their approach when analyzing

estimators that are robust to market microstructure noise. Define the realized autocovariation process

γh (Xδ) = (1− hδ)−1
n∑

j=h+1

(
Xjδ −X(j−1)δ

) (
X(j−h)δ −X(j−h−1)δ

)
, (10)

for h ≥ 0, where the term (1 − hδ)−1 is a small-sample correction factor. The realized kernel estimator in

BNHLS is given by

K̃t (Xδ) = γ0 (Xδ) +
H∑
h=1

k
(h− 1

H

)(
γh (Xδ) + γ−h (Xδ)

)
, (11)

for some kernel function k(·) that satisfies k(0) = 1 and k(1) = 0 and for a suitably chosen lag truncation

or bandwidth parameter H.5 The first term in equation (11), γ0 (Xδ), is identical to the standard realized

variance estimator. The second term is a weighted sum of autocovariances up to order H and can be viewed

as a correction term that aims to eliminate the serial dependence in returns induced by market microstructure

noise. The estimator given in equation (11) is obviously a natural analogue of the well-known heteroskedasticity

and autocorrelation consistent (HAC) estimators of long-run variances in more typical econometric settings.

Apart from realized kernel estimators, so-called subsampling estimators (e.g., Zhang, Mykland, and Aı̈t-

Sahalia 2005) have also been proposed to correct for the effects of market microstructure noise. Subsampling

estimators are, in fact, very closely related to realized kernel estimators; see Aı̈t-Sahalia, Mykland, and Zhang

(2008), BNHLS, as well as the discussion of the quadratic form representation in Andersen, Bollerslev, and

Meddahi (2006). Since the initial version of this paper was written, several studies that analyze the so-

called pre-averaging approach to estimating realized volatility have been published; see Jacod, Li, Mykland,

Podolskij, and Vetter (2009). To keep the exposition of our empirical results manageable in this paper, we

focus only on the realized kernel approach.

2.5 Absolute power and bipower variation methods

Any estimator of volatility which is based on squared values of observations will, to some extent, be sensitive

to the occurrence of outliers in the data in general, and, within the framework of financial models, to jumps in
5In our empirical work, we rely exclusively on the Modified Tukey-Hanningp kernel, which is defined on p. 1496 of BNHLS as

k(x) = sin2
(
(π/2)(1−x)p

)
for x ∈ [0, 1] and for some positive integer p. This kernel function additionally satisfies k′(0) = k′(1) =

0, and it is asymptotically the most efficient of the kernels considered by BNHLS. In this paper, we set p = 2 and H = ĉ · n1/2,
where ĉ is a constant given in equation (16) on p. 1494 of BNHLS.
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asset prices.6 To examine how the presence of jumps affects the properties of the realized variance estimator (4),

it is necessary to consider generalizations of the data generating process (2). Barndorff-Nielsen and Shephard

(2006b) do so by replacing the Brownian motion component of (2),
∫ t
0
σu dWu, with a Lévy process. Lévy

processes have independent and stationary increments but need not have continuous sample paths. All non-

Brownian Lévy processes have jumps, and they may be classified according to whether the number of jumps in

any finite period of time is finite or infinite; the resulting classes are labeled finite-activity and infinite-activity

Lévy processes, respectively.7

To simplify the exposition of how the presence of jumps affects the estimation of integrated volatility, we

shall restrict our attention to the case of finite-activity Lévy processes which contain a diffusive component.8

Suppose that the log price process Xt is given by

Xt =
∫ t

0

au du+
∫ t

0

σu dWu +
Nt∑
j=1

cj . (12)

The process Nt is a finite jump counting process, and the coefficients cj are the sizes of the associated jumps.9

The total quadratic variation of Xt is now given by

[X,X]t =
∫ t

0

σ2
u du+

Nt∑
j=1

c2j , (13)

and it is straightforward to show that the realized variance (4) converges to this term as δ ↓ 0.

In the tradition of robust econometric estimation, absolute-value versions of the realized variance estimator

have been introduced. Barndorff-Nielsen and Shephard (2004b) consider the following normalized versions of

realized absolute variation and realized bipower variation. They set

RAVt = µ−1
1 n−1/2

n∑
j=1

∣∣Xjδ −X(j−1)δ

∣∣ (14)

and

RBVt = µ−2
1 (1− δ)−1

n∑
j=2

∣∣Xjδ −X(j−1)δ

∣∣ ∣∣X(j−1)δ −X(j−2)δ

∣∣ , (15)

6Barndorff-Nielsen and Shephard (2006a), Lee and Mykland (2008), Aı̈t-Sahalia and Jacod (2009), and Lee and Ploberger
(2009) propose formal tests of the hypothesis that a series has a jump component.

7An example of the former class are jump diffusion processes; jump diffusions are the sum of Brownian motion and a compound
Poisson jump process with Gaussian jump sizes (see, e.g., Merton 1976). Two examples of infinite-activity Lévy processes are
the normal inverse Gaussian process (Barndorff-Nielsen 1997a, 1997b) and the multifractal model of asset returns (MMAR); see
Calvet and Fisher (2008) for an overview of the theory and empirical evidence for the MMAR.

8Because financial data are invariably generated discretely and because prices are reported with only a finite degree of precision,
distinguishing between finite- and infinite-activity processes may not be possible in practice. Furthermore, as Barndorff-Nielsen
and Shephard (2006b) and Woerner (2005, 2007) have shown, several robust estimators of integrated volatility share the same
statistical properties for either type of jump process as long as certain regularity conditions are met, including the assumption
that the increments of the process have finite second moments.

9Hence, equation (2) is a special case of (12), with Nt ≡ 0 or, equivalently, cj ≡ 0 for all j.
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where µ1 = E |Z| =
√

2/π ≈ 0.798 and Z is a standard normal random variable. Because a diffusion

process has unbounded absolute variation, scaling by n−1/2 is required in equation (14) in order to obtain

an estimator that converges to a proper limit as the sample size, n, increases to infinity; this contrasts with

the definitions of the realized variance and realized bipower estimators, where no such adjustment term is

required. The term (1 − δ)−1 in equation (15) is a small-sample correction factor. In the absence of market

microstructure noise and assuming that equation (2) holds, Barndorff-Nielsen and Shephard (2004b) show

that RAVt and RBVt, respectively, are consistent estimators of the quantities
∫ t
0
σu du and

∫ t
0
σ2
u du. Hence,

realized bipower variation provides an alternative estimator of the integrated variance of Xt when the data do

not contain a jump component.

Of primary interest for the discussion of the effects of jumps on volatility estimation is that it has been

shown that bipower variation is a consistent estimator of
∫ t
0
σ2
u du under much more general conditions than (2).

For instance, under (12) the realized absolute variation and the realized bipower variation are still consistent

estimators of
∫ t
0
σu du and

∫ t
0
σ2
u du, respectively. By calculating both the realized (quadratic) variation and

the realized bipower variation of Xt, one can separate the total quadratic variation into its diffusive and jump

components. This is useful, for instance, in volatility forecasting, because the jump component of the total

quadratic variation is, in general, far less persistent than the diffusive component (Andersen, Bollerslev, and

Diebold 2007). Even though the limit of the realized absolute variation,
∫ t
0
σu du, has no direct use in most

financial applications, such as the pricing of options, Forsberg and Ghysels (2007) and Ghysels, Santa-Clara,

and Valkanov (2006) report that it is, empirically, a very useful predictor of future quadratic variation.

Since predicting future volatility is often the ultimate goal, we therefore also discuss in our paper how often

to sample when estimating the absolute variation of the returns to a financial time series that is obtained from

deep and liquid markets. In particular, we examine how estimates of realized absolute variation may be

affected by market microstructure noise in such markets. So far, there has been little work aimed at dealing

with the presence of market microstructure noise when calculating realized absolute and bipower variation.

The only attempt that we are aware of is a paper by Andersen, Bollerslev, and Diebold (2007). They suggest

using staggered, or skip-one, returns to mitigate spurious autocorrelations in the returns that may occur due

to microstructure-induced noise. That is, they suggest using the following modified version of equation (15),

RBV1,t = µ−2
1 (1− 2δ)−1

n∑
j=3

∣∣Xjδ −X(j−1)δ

∣∣ ∣∣X(j−2)δ −X(j−3)δ

∣∣ . (16)
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3 The data

3.1 The foreign exchange data

We analyze high-frequency spot dollar/euro exchange rate data from EBS (Electronic Broking System) span-

ning January through December 2005. EBS operates an electronic limit order book system used by virtually

all FX dealers across the globe to trade in several major currency pairs. Since the late 1990s, inter-dealer

trading in the spot dollar/euro exchange rate, the most-traded currency pair, has, on a global basis, become

heavily concentrated on EBS. As a result, over our sample period EBS processed a clear majority of the

world’s inter-dealer transactions in spot dollar/euro. Publicly available estimates of EBS’s share of global

trading volume in 2005 range from 60% to 90%, and prices on the EBS system were the reference prices used

by all dealers to generate dollar/euro derivatives prices and spot prices for their customers. Further details on

the EBS trading system and the data can be found in Chaboud, Chernenko, and Wright (2008) and Berger,

Chaboud, Chernenko, Howorka, and Wright (2008).

The exchange rate data we use are the midpoints of the highest bid and lowest ask quotes in the EBS

limit-order book at the top of each second. The exchange rate is expressed as dollars per euro, the market

convention. The source of the data is the EBS second-by-second ticker, which is provided to EBS’s clients

to generate customer quotes and as input for algorithmic trading. These quotes are executable, not just

indicative, and they therefore represent a true price series. We consider 5 full 24-hour trading days per week,

each one beginning at 17:00 (5 p.m.) New York time.10 Trading occurs around the clock on EBS on those

days. We exclude all data collected from Friday 17:00 New York time to Sunday 17:00 New York time from

our sample, as trading activity during weekend hours is minimal and is not encouraged by the FX trading

community.

We chose to drop several market holidays and days of unusually light trading activity near these holidays

in 2005: January 3, March 25 and 28 (Good Friday and Easter Monday), May 31 (Memorial Day), July 4,

September 5 (Labor Day), November 24 and 25 (Thanksgiving and the following day), December 23 and 26,

and December 30. Similar conventions on holidays have been used in other research on FX markets, such

as by Andersen, Bollerslev, Diebold, and Vega (2003). The resulting number of business days is 250. In the

analysis undertaken for this paper, we drop an additional 4 days in order to line up the FX trading days with

those in the U.S. bond market, in which several additional business days are treated as market holidays, as

described below.

The upper half of Table 1 presents some summary statistics for dollar/euro returns sampled at 24-hour and

5-minute intervals, where returns are calculated as log-differences of the dollar/euro exchange rate. In 2005,

10In the FX market, by global convention, the value date changes at 17:00 New York time (whether or not Daylight Saving
time is in effect). This cutoff thus represents the threshold between two trading days.
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Table 1: Summary statistics

All numbers are expressed as basis points of the price.

Sampling Interval Length

24 Hours 5 Minutes

(i) FX Returns

Mean −4.94 −0.014
Absolute mean 43.31 2.16
Standard deviation 55.71 3.30
Skewness 0.23 −0.14
Kurtosis 3.27 22.17
Minimum −139.1 −61.19
Maximum 169.8 76.26

(ii) 10-year T-Note Returns

Mean −0.68 0.001
Absolute mean 30.20 2.05
Standard deviation 37.91 3.15
Skewness −0.24 −0.57
Kurtosis 2.87 24.09
Minimum −109.04 −55.14
Maximum 80.66 38.84

the average 24-hour return was about −2 basis points (= −0.02 percent)—here, a negative return implies an

appreciation of the dollar versus the euro—and its standard deviation was about 50 basis points (0.5 percent).

At the 5-minute frequency, the mean return is, of course, very near zero. At the 5-minute frequency, returns

were extremely leptokurtic, and their standard deviation was about 3 basis points.

3.2 The bond market data

We analyze high-frequency 10-year on-the-run Treasury cash market data from BrokerTec, also spanning

January through December 2005. In the last few years, BrokerTec has become one of the two leading electronic

brokers for inter-dealer trading in Treasury securities.11 Estimates of BrokerTec’s share of trading in on-the-run

Treasury securities in 2005 range from 40 percent to 70 percent. BrokerTec operates an electronic limit order

book in which traders can enter bid or offer limit orders (or both) and can also place market orders, similar

to EBS.12 Fleming and Mizrach (2008) provide an overview and an analysis of the market microstructure

features inherent in the BrokerTec platform.

The 10-year Treasury price data that we use are the midpoint of the highest bid and lowest ask quotes at

the top of each second. As in the EBS data, the BrokerTec quotes are executable, not just indicative, and they
11The other leading electronic communication network (ECN) for trading in U.S. Treasuries is eSpeed.
12BrokerTec and EBS have both been acquired by ICAP in recent years. BrokerTec was acquired in 2003, EBS in 2006.

11



therefore constitute a true price series. Unlike the EBS data, however, we focus on five 8-hour-long trading

days per week, from 08:00 New York time to 16:00 New York time. BrokerTec operates (nearly) continuously

on five days each week, from 19:00 New York time to 17:30 New York time, with Monday trading actually

beginning on Sunday evening New York time. However, unlike trading in dollar/euro, the vast majority of

trading in Treasury securities occurs during New York business hours (Fleming 1997), and for this reason

we limit our analysis to the 08:00 to 16:00 New York time frame. We excluded the same holidays and days

of extremely light activity from our sample that we excluded from our EBS data. We also dropped a few

additional days, which the U.S. Bond Market Association declared to be market holidays, from the sample.13

The total number of business days retained for both datasets is 246.

The lower half of Table 1 presents summary statistics for T-note returns sampled at 24-hour and 5-minute

intervals, where the T-note returns are calculated as log differences of the price of the 10-year on-the-run

Treasury note. Daily returns are measured from 16:00 New York time readings. The mean daily price return

is about 2 basis point (0.02 percent) and the standard deviation of daily T-note returns was about 44 basis

points in 2005.14 Returns at the five-minute frequency have a standard deviation of about 3 basis points, and

they are also very leptokurtic.

3.3 Prevalence of zero-return intervals across sampling frequencies

The highest available sampling frequency in our datasets is once every second, by construction. In order to

have a reasonably large number of within-day samples within each trading day for each frequency we consider,

we set the longest sampling interval equal to 30 minutes (1,800 seconds) for the dollar/euro returns and to 15

minutes (900 seconds) for T-note returns, resulting in within-day sample sizes of 48 and 32, respectively, at

the lowest sampling frequencies.

A large fraction of the observed high-frequency returns in both markets under study is equal to zero. A zero

return during a given sampling interval can occur either because the price changes during the sampling interval

but then returns to its initial level before the interval ends or—much more commonly—because the price does

not change at all. Table 2 presents the fraction of sampling intervals with zero returns in both markets, for

sampling interval lengths ranging from 1 second to 10 minutes. At the 1-second sampling frequency, about

90 percent of all returns are zero in both series, although the fraction of zero returns is slightly higher for the

T-note data. At the 1-minute sampling frequency, 45 percent of all T-note returns are zero and 26 percent

of all exchange rate returns are zero. In Section 6 we consider in detail the consequences of the prevalence of
13In 2005, these days were January 17 (Martin Luther King, Jr. Day), February 21 (Presidents Day), October 10 (Columbus

Day), and November 11 (Veterans Day). There were also several days in the sample for which the Bond Market Association
recommended a 14:00 closing time. We account for these days in our calculations by limiting the day to 08:00 to 14:00 New York
time and scaling the estimated volatilities appropriately.

14As a rule of thumb, in the present case a 1-percent change in the price of the T-note corresponds to about a 13 basis point
change in the yield.
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Table 2: Frequencies of zero returns in foreign exchange and Treasury note data

Sampling Interval Length (in seconds)

1 5 15 30 60 300 600

FX 0.861 0.652 0.478 0.365 0.263 0.108 0.070
10-year T-Note 0.924 0.789 0.652 0.549 0.450 0.239 0.174

sampling intervals with zero returns on the optimal selection of the sampling frequency and on the estimation

of integrated volatility using absolute and bipower variation methods.

3.4 U.S. macroeconomic data releases

The impact of scheduled U.S. macroeconomic data releases on the level and volatility of exchange rates

and government bond prices has been well documented; see, e.g., Andersen, Bollerslev, Diebold, and Vega

(2003) for foreign exchange and Fleming and Remolona (1999) and Balduzzi, Elton, and Green (2001) for

Treasury securities. In the empirical analysis below, we split the full sample into days with scheduled U.S.

macroeconomic announcements, selected because of their apparent impact on asset prices, and days without

announcements. The monthly announcements we select are the employment report (non-farm payrolls and

the rate of unemployment), the consumer price index, the producer price index, retail sales, and orders for

durable goods. We also select the three quarterly GDP releases (advance, preliminary, final), each released

quarterly, and the eight FOMC announcements. With the exception of the FOMC announcements, which are

released at about 14:15 New York time, all announcements considered here are released at 8:30 New York

time. We treat these days as announcement days irrespective of whether the actual data released differed

from published market expectations or not. Accounting for days with multiple announcements, this gives us

a subsample size of 58 days; the number of non-announcement days is 188.

4 Results for the standard estimator of integrated volatility

4.1 Overview

Figure 1 shows the 2005 time series of daily estimates of the integrated volatility of dollar/euro returns and

T-note returns, based on the standard realized volatility estimator and a sampling frequency of once every five

minutes. Several conclusions may readily be drawn from these plots. First, for both series there is considerable

dispersion in volatility across adjacent days. Second, in 2005 neither volatility series displays a discernible time

trend or any seasonality patterns, indicating that it may be meaningful to compute (suitably defined) averages

13



Figure 1: Point estimates of realized volatility in 2005, dollar/euro and T-note returns

Note: Realized volatility estimates are based on returns sampled at 5-minute intervals.
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in order to study general relationships between sampling frequency and realized volatility. Third, volatility is

clearly higher, on average, on days with scheduled major U.S. macroeconomic news announcements, depicted

by solid circles in both plots, than on non-announcement days, shown as open squares. This is particularly—

but certainly not surprisingly—true for the T-note return volatility estimates shown in Panel B of Figure 1.

A volatility signature plot, by common convention, graphs sampling frequencies on the horizontal axis and

the associated estimates of realized volatility on the vertical axis. Such plots, which appear to have been

first used in the context of realized volatility estimation by Andersen, Bollerslev, Diebold, and Labys (2000,

p. 106), are now used frequently in empirical research on this subject because they provide an intuitive visual

tool for the analysis of the relationships between these two variables. Quite often, it is possible to discern

from a volatility signature plot a sampling frequency, which we will call the critical sampling frequency, that

serves to separate sufficiently-low frequencies, for which market microstructure noise does not seem to affect

estimates of realized volatility, from the higher frequencies, for which market microstructure noise does appear

to have an effect. We make extensive use of volatility signature plots in our paper.

Because we need to display volatility estimates over very wide ranges of sampling interval lengths—from 1

second to nearly 210 seconds—and because our focus is on the empirical effects of market microstructure noise—

which is generally thought to be present in returns mainly at the highest sampling frequencies—we display all

signature plots using a base-2 logarithmic scale on the horizontal axis. A logarithmic scale, by design, gives

greater visual prominence to the relationship between sampling frequency and volatility at shorter sampling

intervals (higher sampling frequencies).

The shapes of the daily volatility signature plots can vary considerably across days. Figure 2 shows

signature plots for dollar/euro volatility for two days in 2005: October 3, a day of average volatility, and

July 21, the day in 2005 with the highest realized volatility using sampling intervals of 5 minutes.15 The two

signature plots differ not only in their vertical scales but also in their shapes. On October 3 (Figure 2A),

realized volatility decreases at first as the sampling interval lengths increase from 1 second to about 15 seconds,

then shows no further trend and roughly constant dispersion as the sample intervals lengthen to about 120

seconds, and exhibits a rapidly increasing dispersion as the lengths of the sampling intervals increase further

to 30 minutes (1,800 seconds). On July 21, realized volatility declines, though only slightly, as the sampling

interval length rises from 1 second to 3 seconds; volatility then increases modestly on average and also is

slightly more dispersed as the interval lengths rise to about 120 seconds, and it becomes much more dispersed

(but without apparent trend) as the interval lengths increase further.

15On July 21, 2005, after close of business in China but before the start of the business day in North America, the Chinese
authorities announced a revaluation of their currency, the renminbi, by 2.1 percent against the U.S. dollar. On that day, FX
market volatility was quite elevated in most major currency pairs.
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Figure 2: Realized volatility signature plots for dollar/euro returns on 2 specific dates

Notes: Horizontal axes use logarithmic scale. Vertical lines represent 95% confidence intervals. The confidence
interval in Panel B. for the 1024-second interval is truncated below to conserve vertical space. Figure 2
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Ninety-five percent confidence intervals, based on the asymptotic result stated in equation (5), are also

shown in Figure 2 for selected sampling frequencies.16 These confidence intervals clearly illustrate the poten-

tial benefits of sampling more frequently, as they show that sampling uncertainty regarding volatility declines

rapidly as the number of intra-daily observations increases. Of course, the confidence intervals are only unbi-

ased if the realized volatilities that they are constructed around are unbiased estimates of the true integrated

volatility. As the sampling frequency increases, this assumption becomes increasingly less likely. However, if

one could sample dollar/euro returns at, say, the 30-second frequency without inducing bias, the increase in

precision compared with the conventional 5-minute sampling frequency is clearly considerable.

Considerable heterogeneity in the shapes of the dependence of realized volatility on the sampling frequency

also applies to T-note returns; cf. Figure 3. On October 3, realized volatility at first decreases steadily, up

to a sample length of about 15 seconds, and then becomes increasingly dispersed without an apparent trend

as the sampling intervals lengthen further. On July 21, in contrast, the point estimates of realized volatility

decline on average as the sample length increases, while their dispersion, even across adjacent sample lengths,

becomes rapidly very pronounced. 95% confidence intervals are shown for selected frequencies.

The signature plots in Figures 2 and 3 thus illustrate a distinct advantage of computing realized volatility

at higher rather than at lower intraday frequencies—as long as, of course, the sampling frequency does not

exceed the critical sampling frequency. The signature plots show that the range of realized volatility estimates

across adjacent sampling frequencies is considerably lower if dollar/euro and T-note returns are sampled at

sample interval lengths between 15 and 120 seconds than if they are sampled at longer intervals. Sampling

at higher frequencies therefore makes it less likely that the choice of the sampling frequency introduces an

undesirable degree of arbitrariness into the process of estimating realized volatility.17

4.2 The dependence of realized volatility on the sampling frequency

As we noted in the discussion of Figure 1, the realized volatility of dollar/euro and T-note returns is higher,

on average, on days with scheduled major U.S. macroeconomic news announcements. This result is especially
16The confidence intervals shown in Figures 2 and 3 are constructed using equation (5). The widths of the confidence intervals

are determined by the number of observations, which is proportional to the inverse of the sampling frequency, and the quarticity Qt

of the process. The quarticity is estimated using equation (8), with returns sampled at the 10-minute frequency in all cases. That
is, the same estimate of the quarticity, based on 10-minute returns, is used in the calculation of the confidence intervals for the
realized volatility at all sampling frequencies. We follow this convention in order to cleanly identify the effects of the increasing
sample size as the sampling frequency increases, while avoiding the effects of potential biases and differences in the point estimates
of the quarticity calculated for different sampling frequencies. I.e., the quarticity estimate based on the 10-minute data should
be unbiased, and the widths of the confidence intervals should therefore be unbiased as well, even though the volatility estimates
around which the intervals are formed could obviously be biased, especially at the highest sampling frequencies.

17To be sure, this drawback of using sampling frequencies that are too low could be attenuated by computing the realized
volatilities for several, staggered starting points and then averaging across these estimates. It seems more straightforward,
however, to estimate the volatility directly from returns sampled at the higher frequency, while ensuring that one does not exceed
the critical sampling frequency.
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Figure 3: Realized volatility signature plots for T-note returns on 2 specific dates

Notes: Horizontal axes use logarithmic scale. Vertical lines represent 95% confidence intervals. The confidence
intervals in Panel A. for the 64-second to 1024-second intervals are truncated below to conserve vertical space.
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evident when one averages the daily volatility estimates over time, i.e., if the volatility signature curves are

averaged separately for announcement days and non-announcement days.

Figure 4A shows the effect of averaging within each of these two types of days on the relationship between

sampling frequency and realized volatility for dollar/euro returns. The plot highlights the stylized fact that

if a day falls into the subset of announcement days, realized volatility is elevated relative to the subset of

non-announcement days. In addition, the figure also shows that, on average, estimates of realized volatility

on non-announcement days are quite insensitive to the choice of sampling interval length, at least as long as

it falls into a range from about 20 seconds to about 10 minutes. In contrast, for sampling intervals shorter

than 20 seconds, the estimates of integrated volatility are noticeably higher, and they increase progressively

as the interval lengths decrease. This suggests that whereas market microstructure noise is present and affects

realized volatility at the very highest sampling frequencies, it does not have a noticeable effect on realized

volatility for sampling frequencies lower than once every 20 seconds. This same general finding also applies

for the subset of days with major scheduled economic announcements: realized volatility increases markedly

if returns are sampled more often than once every 15 seconds.18 For the case of dollar/euro returns, the

critical sampling frequencies, i.e., the frequencies above which market microstructure noise has an increasingly

important influence on realized volatility, are thus roughly the same in the two subsamples.

Figure 4B shows the time-averaged signature plots of T-note returns for announcement days and for non-

announcement days. One notes immediately that, for any given sampling frequency, integrated volatility is

much higher on announcement days than it is on non-announcement days. In addition, it appears that, on

average, the contribution of market microstructure noise to realized volatility is considerably larger for T-

note returns, as the slopes of the (time-averaged) signature plots are steeper at the very highest sampling

frequencies than was the case for dollar/euro returns. Third, and of the most relevance for the purposes of our

paper, the critical sampling frequency is rather different from the dollar/euro case, for both announcement and

non-announcement days. It is in the range of once every 120 to 180 seconds on days without scheduled major

macroeconomic announcements, and about once every 40 seconds on announcement days. We infer that even

though volatility is higher on announcements days, the critical sampling frequency is at least three times higher

on announcement days than on non-announcement days. This finding clearly suggests that it is preferable to

sample T-note returns more frequently on announcement days than on non-announcement days, in order to

obtain volatility estimates that are more precise yet not affected noticeably by market microstructure noise.
18We also observe that, in contrast to the case of non-announcement days, where the plot line is virtually flat for frequencies

lower than the critical frequency, the plot line declines steadily (though only slightly) as the sampling interval length increases
beyond 15 seconds. This suggests that FX trading dynamics on announcement days in 2005 may also have been characterized by
a small amount of mean reversion at medium frequencies rather than just at the highest frequencies (as would be the case if the
dynamics were purely of the microstructure variety).
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Figure 4: Time-averaged realized volatility signature plots and announcement effects

Notes: Horizontal axes use log scale. Shaded areas represent 95% confidence intervals for average volatility.
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The shaded areas in the graphs in Figure 4 represent 95% confidence intervals for the average daily

volatilities, on announcement and non-announcement days, for each sampling frequency.19 These confidence

intervals further highlight the difference in the average volatility on announcement and non-announcement

days.

To sum up, when using the standard realized volatility estimator, the volatility signature plots suggest that

it is possible to sample dollar/euro returns as frequently as once every 20 seconds on non-announcement days

(15 seconds on announcement days), and to sample T-note returns as often as once every 2 to 3 minutes on non-

announcement days (once every 40 seconds on announcement days), without incurring a significant penalty

in the form of an upward bias to estimated volatility. Our estimated critical sampling frequencies—especially

for the case of dollar/euro returns—are considerably higher than those published by other researchers, who

typically focused on returns to individual equities and suggested that one should not sample more often

than once every 5 minutes or so if one wishes to avoid bias caused by market microstructure dynamics (e.g.,

Andersen, Bollerslev, Diebold, and Ebens 2001).20

4.3 A formal rule for choosing the optimal sampling frequency

In addition to examining volatility signature plots, one may wish to have a more formal method for establishing

the critical sampling frequency. One such method is the optimal sampling rule of Bandi and Russell (2006),

which was introduced in Section 2 and is also very similar to the rule developed by Aı̈t-Sahalia, Mykland, and

Zhang (2005). The optimal sampling frequencies for dollar/euro and T-note returns are shown in Figure 5 for

each day of the sample. The average sample interval lengths across all days in the full sample are 170 and 327

seconds, respectively, for dollar/euro returns and T-note returns. Although there is a fair degree of variation

from day to day, these averages are nevertheless considerably above those we deduced from the volatility

signature plots shown in the previous section. This is especially true for dollar/euro returns; according to the

signature plots, it may be possible to sample as often as once every 15 to 20 seconds in the dollar/euro market

without incurring a significant bias caused by market microstructure features.

Signature plots are, of course, informal graphical tools which cannot by themselves deliver unambiguous

answers. Nevertheless, signature plots are essentially model-free and they rely on much less stringent assump-

tions about the nature of the data generating process than formal sampling rules do. For example, the method
19The confidence intervals are calculated in a standard manner from the standard deviation of the daily realized volatilities;

this standard deviation is obtained using Newey and West (1987) standard errors to control for serial correlation in the daily
realized volatilities.

Alternatively, by noting that realized volatility tends to be distributed log-normally rather than normally (e.g., Andersen,
Bollerslev, Diebold, and Labys 2003), one could attempt to improve upon the precision of these confidence intervals in the
manner described by Hansen and Lunde (2006, Appendix B, pp. 159–160). We applied their method, but found that the resulting
confidence intervals are virtually identical to the ones shown here.

20Some of the differences in the critical sampling frequencies also owe to a reported general increase in market liquidity and
depth common to many financial markets between the late 1990s and 2005, the year used in this study.
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Figure 5: Optimal sampling interval lengths suggested by Bandi and Russell (2006) method
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of Bandi and Russell (2006) assumes that there are no jumps in the price process. Even more important, in our

view, is the possibility that the variance ω2 of the noise term cannot be estimated properly from the returns

sampled at the second-by-second frequency, which is the highest-available frequency in both datasets. If the

time series are generated in deep and liquid markets, returns sampled even at the second-by-second frequency

may still contain too much signal, and hence not enough noise, in order to be able to estimate ω2 consistently.

(Hansen and Lunde (2006) make a similar point.) This issue may be less of a concern for the T-note returns,

where the signature plots indicated critical sampling intervals in the 2 to 3 minute range. This may explain

why the results from the signature plots and the Bandi-Russell sampling rule are somewhat closer to each

other for T-note returns than they are for dollar/euro returns.

The optimal sampling frequencies we obtain using the Bandi and Russell rule are higher, and the associated

sampling interval lengths are shorter, on days with scheduled U.S. macro announcements. This confirms one

of the findings we obtained from the signature plots, which is that even though market microstructure noise

is likely to be greater on announcement days (for instance, in terms of a larger bid-ask spread), the signal is

even stronger on such days, implying that the critical sampling frequency is higher on announcement days.

As we noted in Section 3.3, when returns are sampled at very high frequencies, many of the dollar/euro and

T-note returns are zero because there is no price change over many of the short time intervals. Phillips and

Yu (2006, 2008) observe that the prevalence of flat pricing over short time intervals implies that the market

microstructure noise and the unobserved efficient price components of the observed price process are negatively

correlated over these periods, and that these two components may become perfectly negatively correlated as

δ ↓ 0. In addition, the maintained assumption that the market microstructure noise is independent of the

latent price process, which underlies the derivation of the Bandi and Russell rule, cannot be strictly valid

if the observed price process is discrete rather than continuous. In such a framework, sampling at ever-

higher frequencies ultimately does not even produce a consistent estimator of the variance of the market

microstructure noise. If this feature of the data is not taken into account, the Bandi and Russell rule will

tend to lead to choices of the optimal sampling interval lengths that are too large. We interpret our empirical

results as being fully consistent with this theoretical observation.

5 Kernel-based methods

5.1 Autocorrelations in high-frequency returns

The use of the realized kernel estimator of integrated volatility, described in Section 2.4 above, is motivated

along lines similar to those for heteroskedasticity and autocorrelation consistent (HAC) estimators of the long-

run variance of a time series in traditional econometrics (e.g., Newey and West 1987). That is, by adding
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autocovariance terms, an estimator is constructed which better captures the relevant long-run variance in the

data. Before showing our empirical results for the performance of the BNHLS realized kernel estimator, it

is therefore instructive to study the autocorrelation patterns in the high-frequency intraday returns data to

build up some intuition that will help guide the interpretation of our empirical results.

Figure 6 shows the average autocorrelation across all days in the sample, out to 30 lags, for data sampled

at the 1, 10, 30, and 60-second sampling frequencies. That is, for a given lag and sampling frequency, the

within-day autocorrelation in high-frequency returns is calculated for each day and is then averaged across

all days in the sample. When sampling at the 1-second frequency, it is evident that there is some negative

autocorrelation in both dollar/euro and T-note returns, and that this correlation stretches out for about 10

to 15 lags, i.e., that non-zero serial dependence in 1-second returns persists for about 10 to 15 seconds. For

returns sampled at the 10-second frequency, there is still some evidence of nonzero autocorrelation in the first 4

to 5 lags. For returns sampled at the 30- and 60-second frequencies, there is little evidence of any systematic

pattern in the autocorrelations of the dollar/euro returns; for the T-note returns, only the first two serial

correlation coefficients are nonzero for these two sampling frequencies.

The autocorrelation patterns shown in Figure 6 correspond well to the findings using signature plots of

how often one can sample returns when using the standard realized volatility estimator. In particular, there

is little evidence of any autocorrelation in the dollar/euro data for returns sampled at frequencies lower than

once every ten seconds. The conclusion from the volatility signature plots shown above was that the critical

sampling frequency for dollar/euro returns is in the 15 to 20 second range. This finding corresponds very well

to the fact that dollar/euro return autocorrelations are insignificant for time spans beyond about 20 seconds.

Similarly, because there is still a large amount of negative first-order autocorrelation in the one-minute T-note

returns, it is not surprising that we also obtained a much lower critical sampling frequency for this asset using

the signature plot method.

Overall, the results in Figure 6 suggest that in the case of dollar/euro returns and for sampling intervals

shorter than 30 seconds, using kernel estimators should help reduce any bias in realized volatility estimates.

For T-note returns, this results holds for returns sampled at frequencies higher than once every 2 minutes.

5.2 Optimal bandwidth choice

The graphs in Figure 6 give some indication of how many lags one may want to include in the realized kernel

estimator in equation (11). However, they do not, by themselves, provide a simple prescription for action.

BNHLS also propose a rule for an optimal choice of the bandwidth or lag truncation parameter. They show

that, in their framework, the optimal bandwidth is a function of both the sampling frequency and a scale
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Figure 6: Autocorrelation functions of returns sampled at selected frequencies

Note: Sampling frequencies are expressed in seconds.
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parameter, ĉ, which is independent of the sampling frequency; ĉ must be estimated, and the details are given

in BNHLS. The optimal bandwidth is then given by H = ĉ n1/2.

The time series of optimal bandwidths in 2005 for returns sampled at the 1-second frequency are shown in

Figure 7. For dollar/euro data (Figure 7A), the optimal bandwidths range between 4 and 7, and for T-note

returns (Figure 7B), the optimal bandwidths are typically between 5 and 10. The optimal bandwidths are

roughly similar to, but usually somewhat smaller, than the number of lags for which there seems to be a

non-zero autocorrelation in the 1-second returns (Figure 6). As with any kernel estimator, the choice of the

value for the bandwidth parameter involves a bias-variance trade-off, with a larger value leading to a smaller

bias but also a higher variance. The optimal bandwidth choice incorporates this bias-variance trade-off. It is,

in general, not optimal to control for all of the autocorrelation in the data by using a very large value for the

bandwidth parameter, as doing so may induce a lot of variance into the estimator.

Calculating the optimal bandwidth parameter H for returns sampled at the 1-minute and lower frequencies,

we find that the result is always a number between 0 and 1 for the dollar/euro returns series and between

0 and 2 for the T-note series, for all days in the sample. Depending on whether one rounds the results up

or down—recall that the bandwidth has to be an integer—the result is thus always an optimal bandwidth of

either 0 or 1 for the dollar/euro data or 0, 1, or 2 for the T-note data, at these lower sampling frequencies.

Throughout the rest of the analysis reported in this section, the estimate for the optimal bandwidth is always

rounded up, so that at least one lag is always included in the realized kernel estimator that incorporates the

optimally chosen bandwidth for each sampling frequency.

In summary, for the very highest sampling frequencies available in our dataset, the bandwidth selection

rules of BNHLS suggest that a moderate number of lags should be included, but for lower sampling frequencies

the rule indicates that at most two lags should be included.

5.3 Signature plots for realized kernel estimates

In this section we display signature plots for 6 different choices of H: the standard realized volatility estimator

(which corresponds to the realized kernel estimator with bandwidth zero), the realized kernel estimator with

fixed bandwidths of 1, 5, 10, and 30, and the realized kernel estimator that uses a bandwidth optimally chosen

for each sampling frequency.

As we did in Section 4 for the standard realized volatility estimator, we begin by studying the volatility

signature plots for two specific business days in 2005. Signature plots for dollar/euro returns on these days are

displayed in Figure 8, while signature plots for T-note returns are shown in Figure 9.21 Figure 8A shows the

signature plot of dollar/euro returns on October 3, 2005, which was a day of average volatility. For this day,

21Given the large number of lines already shown in Figures 8–11, no confidence intervals are presented.
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Figure 7: Optimal choices of bandwidth parameter H using the BNHLS method, for 1-second
returns

Note: Bandwidth parameter H is not constrained to be integer-valued.
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we easily observe the pattern that one would expect as a result of changing the bandwidth parameter. The

standard estimator, which is obtained by setting H = 0, yields nearly constant estimates of realized volatility

(of about 8.5 percent at an annualized rate) for all sampling interval lengths between about 15 seconds and

about 4 minutes. In contrast, for sampling frequencies higher than about once every 15 seconds the standard

estimator is biased upwards, and it becomes increasingly more biased as the sampling frequency increases.

For bandwidths greater than 0, the influence of market microstructure noise on realized volatility becomes

increasingly less pronounced, especially at the highest-available sampling frequencies. For H = 1 (the blue

short-dashed line), we find that one can sample as frequently as once every 5 seconds without incurring any

apparent bias in estimated volatility; setting H = 10 would allow us to sample as frequently as once every 2

seconds; and if one were to use 30 lags in the kernel estimator, there is no apparent bias even at the 1-second

sampling frequency. Using the optimal bandwidth produces a signature plot that is quite similar to the one

that results from using a fixed bandwidth equal to 1.

In contrast, for the high-volatility day of July 21, 2005, shown in Figure 8B, it is harder to draw any firm

conclusions. On that day, using a value of H > 1 would result in estimates of realized volatility that are

actually slightly larger than those obtained with the standard estimator, except when the sampling interval

lengths are as short as 1 or 2 seconds. It is worth noting that volatility and trading volume were both

exceptionally high on that day, and hence it may not even be necessary to employ a kernel-based correction

for this specific day in order to obtain a low-bias estimate of volatility.

The results for the T-note returns on the same two dates are overall quite similar to those for dollar/euro

returns, but there are also some striking differences. In Figure 9A, for the medium-volatility day of October 3,

2005, we see a pattern that is fairly similar to the one we observed in Figure 8A for dollar/euro returns: setting

H = 1 already achieves important gains in terms of the usable critical sampling frequency, from about once

every 20 seconds to once every 4 seconds; by H = 10, one can sample as frequently as once every second; and

increasing the bandwidth further to H = 30 produces little additional gain for any of the higher sampling

frequencies of interest.22 For the high-volatility day of July 21, 2005, setting H = 1 shortens the critical

sampling interval length from about 2 minutes to about 30 seconds, and setting H = 10 or H = 30 reduces

the length of this interval further, to about 15 seconds.

Figure 10 shows the signature plots of dollar/euro returns averaged separately for non-announcement

days and announcement days in 2005. As was discussed in Section 4, when using the standard realized

volatility estimator the critical sampling interval length for dollar/euro returns on non-announcement days

and announcement days, respectively, was between 15 and 20 seconds in 2005. By including just one lag in the

realized kernel estimator, the critical sampling interval length for dollar/euro returns drops to about 4 seconds
22For the T-note returns, kernel estimates with H = 30 are not reported for the lowest sampling frequencies, i.e. the longest

sampling intervals, since there are not enough observations available at these frequencies to form an estimate when using 30 lags.
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Figure 8: Kernel-based realized volatility signature plots, dollar/euro returns, 2 specific dates

Note: For the case of H = 30, volatility estimates were computed only for sampling interval lengths up 600
seconds, as small-sample issues made calculating realized volatility unreliable at longer sampling intervals.

H=0 H=1 H=5
H=10 H=30 H=Opt

Figure 8

 A. Oct. 3, 2005

V
o
l
a
t
i
l
i
t
y
 
(
P

e
r
c
e
n
t
)

7

8

9

10

11

12

Sampling Interval Length (Seconds)

1 2 4 8 16 32 64 128 256 512 1024 2048

 B. July 21, 2005

V
o
l
a
t
i
l
i
t
y
 
(
P

e
r
c
e
n
t
)

10

11

12

13

14

15

16

17

18

19

Sampling Interval Length (Seconds)

1 2 4 8 16 32 64 128 256 512 1024 2048

29



Figure 9: Kernel-based realized volatility signature plots, T-note returns, 2 specific dates

Note: See explanation given in Figure 8.
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(on average) on non-announcement days. Using the optimal bandwidth selection rule of BHNLS results in

a similar critical sampling interval length. If one sets H = 10 or H = 30, even sampling at the 1-second

frequency seems admissible for the purpose of calculating realized volatility. On the subset of announcement

days, shown in the lower panel of Figure 10, setting H = 1 shortens the critical sampling interval length to

about 8 seconds, and setting H = 5 shortens this interval still further, to about 4 seconds.

The results for the T-note returns, shown in Figure 11, are similar in nature to those for dollar/euro

returns: including just 1 lag in the realized kernel estimator increases the critical sampling frequency to about

once every 40 seconds on non-announcement days and to once every 30 seconds on announcement days. Using

30 lags, this frequency climbs to about once every 8 seconds, on both types of days in 2005.

5.4 Implications for practical use of realized kernel estimators

The results just presented indicate that there is considerable scope for achieving much higher critical sampling

frequencies, for dollar/euro and T-note returns, by using a kernel estimator rather than the standard estimator

of realized volatility, and thereby also achieving greater precision in the estimates of volatility. There is,

however, a bias-variance trade off for the number of lags included in the realized kernel estimator. Thus, even

though we find that using 30 lags would allow us to sample at the 1-second frequency in the case of dollar/euro

returns and the 8-second frequency for T-note returns, it may not be optimal to do so. Indeed, according to

the BNHLS rule, the (time-averaged) optimal bandwidth at the 1-second frequency is always much smaller

than 30. Using the optimal bandwidth, the critical sampling frequency appears to be about once every 2 to 5

seconds for dollar/euro returns, while for T-note returns it is about once every 30 to 40 seconds.

Unfortunately, calculating the optimal bandwidth is fairly involved. However, judging by the results

shown in Figures 8 through 11, our empirical results for the kernel-based realized volatility estimator using

the optimally chosen bandwidth are very similar for those we found using the kernel estimator with a fixed

lag length of 1. Note that for H = 1 the kernel estimator has a very simple functional form, viz.,

K̃t (Xδ) = γ0 (Xδ) + 2γ1 (Xδ) , (17)

because if H = 1 we have k(0) = 1 in equation (11). Therefore, at least for the two financial returns series

studied in this paper, we find that by augmenting the standard realized volatility estimator with just one

additional term, the critical sampling frequency can be increased considerably without giving up much in

terms of the simplicity of the calculations. This estimator is, incidentally, also identical to the noise-corrected

estimator proposed in the seminal paper of Zhou (1996).
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Figure 10: Time-averaged kernel-based volatility signature plots, dollar/euro returns

Note: See explanation given in Figure 8.
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Figure 11: Time-averaged kernel-based volatility signature plots, T-note returns

Note: See explanation given in Figure 8.
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6 Estimation of integrated volatility using absolute power and bi-

power variation methods

The standard estimator of integrated volatility is potentially quite sensitive to outliers, as it is computed from

squared returns. This raises the issue of how robust estimators of volatility, which are functions of absolute

rather than squared returns, perform in practice. As discussed before, these estimators converge to measures

of the daily variation of the diffusive, or non-jump, part of the returns process. Since much of the difference

in daily volatility that was seen for announcement days relative to non-announcement days (Figure 4), may

very well stem from jumps rather than diffusive moves in returns, it is particularly interesting to examine

how estimates of volatility differ between announcement and non-announcement days when the two robust

methods are used. In addition, we also study the degree to which market microstructure noise affects estimates

of volatility across sampling frequencies when robust estimators are employed.

6.1 Volatility estimation using absolute variation methods

The realized absolute variation of a continuous time diffusion process X, sampled over [0, t] at intervals δ, was

introduced earlier as

RAVt = µ−1
1 n−1/2

n∑
j=1

∣∣Xδj −Xδ(j−1)

∣∣ . (18)

The factor µ−1
1 =

√
π/2 ≈ 1.253 is needed to obtain an estimate of the mean absolute variation of Xt over

[0, t],
∫ t
0
σu du, under the diffusion model (2), rather than of the mean absolute return of Xt over that period.23

Because real data are generated discretely and not continuously, the term n, the sample size, in equa-

tion (18) needs to be interpreted carefully in empirical work. When data are generated discretely, there will

be time intervals during which no new data arrive and hence returns are zero. Furthermore, because trading

activity is not distributed uniformly during the day, the relative frequency of zero-return intervals increases

as the intraday sampling frequency rises.24 With discretely-generated data, then, one must take care not to

use the theoretical sample size, bt/δc, that corresponds to a given sampling interval length δ, because more

and more of the sample periods would be characterized by zero returns as δ ↓ 0. Instead, one should use the

effective sample size, i.e., the number of intervals within a day during which a transaction occurred.

23The justification for using the quantity µ−1
1 in empirical work is mainly asymptotic. According to the summary statistics

shown in Table 1, for the case of 24-hour returns, the empirical ratio of the standard deviation of returns to the mean absolute
return is equal to 1.29 and 1.32, respectively, for dollar/euro and T-note returns, fairly close to the value of µ−1

1 . However, for
5-minute returns, which are considerably more leptokurtic than 24-hour returns, this ratio equals 1.52 and 1.54, respectively, for
dollar/euro and T-note returns. We leave to future research to establish in more detail how the conversion factor µ−1

1 should be
adjusted to take into account that the data generating process is subject to jumps.

24As is shown in Table 2, on an average trading day in 2005 the effective sample size for dollar/euro and T-note returns at the
1-second frequency was only 14 percent and 8 percent, respectively, as large as the theoretical sample size. We note that these
numbers represent averages across all trading days in 2005. The fraction of 1-second intervals with non-zero returns within a day
can vary considerably across days.
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We compute estimates of the daily variation based on the realized absolute variation of dollar/euro and

T-note returns using the same range of sampling frequencies as in the preceding section, and we also average

separately across announcement and non-announcement days. The resulting signature plots are shown in

Figure 12. These plots share certain similarities with the ones shown in Figure 4, but they also exhibit some

important differences. First, we find that the estimates of daily variation that are based on absolute returns

differ by less, on average, across announcement and non-announcement days than is the case for the volatility

estimates that are based on squared returns. This suggests that the jump components of returns, which

presumably are both more frequent and more pronounced on announcements days, indeed affect the standard

realized volatility estimator disproportionately, just as the asymptotic theory for this estimator would predict.

This effect is particularly strong for dollar/euro returns (Figure 12A): volatility estimates show little difference

across the two subsamples when they are computed using absolute returns. The 95% confidence intervals for

the average daily variation in the dollar/euro returns further re-enforce this finding, with a fairly large overlap

between the announcement and non-announcement days, especially at lower sampling frequencies.25

A second important difference between the signature plots for the robust estimator in Figure 12 and those

for the standard estimator in Figure 4 lies in their response to changes in the sampling frequency. For both

dollar/euro and T-note returns, and both on announcement days and on non-announcement days, realized

volatility increases faster with the sampling frequency if it is computed as a function of absolute returns. While

we can not offer a full explanation for this finding, we conjecture that this difference may offer important clues

to the nature of the market microstructure noise process that affects returns at the very highest frequencies.

Judging from the signature plots shown in Figure 12, the critical sampling frequency equals about 4 to

5 minutes for both dollar/euro and T-note returns, and both on announcement and on non-announcement

days. These estimates of the critical sampling frequencies are substantially lower, and the associated sampling

interval lengths are therefore substantially longer, than those we found when computing realized volatility

using squared returns. Exploring the causes of this pronounced difference is left to future research.

6.2 Integrated volatility estimated from bipower variation

As set out in Section 2, bipower variation is calculated from the products of adjacent absolute returns, rather

than simple squared returns, and it is therefore more robust to large outliers such as non-diffusive jumps.

For a sample interval length of 300 seconds, for which neither market microstructure noise effects nor small-

sample effects should be relevant for our two series, Table 3 shows that the ratio of bipower-based volatility

to total realized volatility averages about 0.94 for dollar/euro returns, on both announcement days and non-

25The confidence intervals in Figures 12 to 14 are calculated in an analogous manner to those presented in Figure 4; see the
first paragraph in footnote 19 for details.
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Figure 12: Time-averaged absolute variation volatility signature plots

Notes: Horizontal axes use log scale. Shaded areas represent 95% confidence intervals for average volatility.
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Table 3: Fraction of total realized volatility contributed by bipower volatility

Sampling Interval Length (in seconds)

1 5 15 30 60 300 600

(i) FX Returns

Full Sample

Mean Total Realized Volatility 10.42 9.22 8.78 8.71 8.70 8.70 8.61
Mean Bipower Volatility 6.62 7.90 7.91 8.04 8.16 8.17 8.12
Ratio 0.64 0.86 0.90 0.92 0.94 0.94 0.94

Non-Announcement Days

Mean Total Realized Volatility 10.31 9.05 8.60 8.53 8.54 8.58 8.49
Mean Bipower Volatility 6.43 7.65 7.69 7.82 7.95 8.02 7.95
Ratio 0.62 0.85 0.89 0.92 0.93 0.94 0.94

Announcement Days

Mean Total Realized Volatility 10.79 9.81 9.42 9.33 9.28 9.16 9.09
Mean Bipower Volatility 7.16 8.64 8.59 8.70 8.77 8.60 8.59
Ratio 0.66 0.88 0.91 0.93 0.94 0.94 0.95

(ii) 10-year T-Note Returns

Full Sample

Mean Total Realized Volatility 7.55 6.56 5.80 5.43 5.09 4.69 4.72
Mean Bipower Volatility 3.78 4.83 4.76 4.69 4.53 4.40 4.46
Ratio 0.50 0.74 0.82 0.86 0.89 0.94 0.95

Non-Announcement Days

Mean Total Realized Volatility 7.26 6.27 5.49 5.07 4.71 4.30 4.33
Mean Bipower Volatility 3.61 4.58 4.43 4.35 4.19 4.06 4.14
Ratio 0.50 0.73 0.81 0.86 0.89 0.94 0.96

Announcement Days

Mean Total Realized Volatility 8.49 7.50 6.81 6.57 6.30 5.96 5.99
Mean Bipower Volatility 4.29 5.60 5.73 5.67 5.56 5.40 5.43
Ratio 0.51 0.75 0.84 0.86 0.88 0.91 0.91

announcement days. For T-note returns, this ratio comes to 0.90 and 0.94, respectively, on announcement and

non-announcement days.26 Thus, in 2005 only about 5 to 10 percent of the total volatility was contributed by

the jump component of returns of either series, while the remainder stemmed from the diffusive component.

The approximate equality of these proportions across the two subsamples is intriguing, but this finding may

well be specific to our sample period. For more volatile periods than 2005—when volatility in many markets

was among the lowest recorded in years—the relative contributions of diffusive and jump shocks to the total

variation may well be very different.
26Similar ratios obtain for slightly shorter sample interval lengths.
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Figure 13 shows the signature plots for dollar/euro and T-note returns using the realized bipower variation

estimator defined in equation (15).27 These signature are quite different from those shown that are based

on squared returns (Figure 4) or absolute returns (Figure 12). Most notably, at the very highest sampling

frequencies available, the bipower-based signature plots are downward sloping as a function of the sampling

frequency. Although we cannot rule out that market microstructure noise could account for a part of this

feature, its most likely determinant is the fact that, as the sampling frequency increases, the fraction of

sampling intervals with zero returns increases as well. Because the bipower variation estimator is calculated

from the sum of the products of adjacent absolute returns, two consecutive non-zero returns are required to

obtain a non-zero increment to the estimate of volatility. As zero returns are especially prevalent at the highest

sampling frequencies, the result is a decline in estimated volatility at those frequencies.28

The critical frequency thus depends both on the actual properties of the microstructure noise process as

well as on the relative scarcity of non-zero observations at various sampling frequencies. For the bipower-based

volatility of dollar/euro returns, this frequency appears to be around 15 to 30 seconds on announcement days

and around 1 minute on non-announcement days. For T-note returns, the critical frequencies are around 1

and 2 minutes, respectively, on announcement and non-announcement days.

Figure 14 shows the signature plots for the realized bipower variation using the skip-one returns defined in

equation (16). This estimator relies on products of absolute returns with one sample period left out in between

the terms. The intuition for this method is that by skipping over one term one may be able to eliminate some

of the serial correlation in returns that could be caused by market microstructure features. Unfortunately, the

volatility estimates we obtain using the skip-one method are not straightforward to interpret. Across most

sampling frequencies and for both dollar/euro and T-note returns, estimated volatility using the skip-one

bipower method tends to be lower than if it is computed on the basis of the standard bipower estimator. This

result could be due to a more thorough elimination of bias imparted by market microstructure noise. However,

we note that this result is also present at longer sampling interval lengths, for which microstructure noise is

thought to play a less significant role. Hence, the lower volatility estimates using the skip-one method almost

certainly also reflect patterns in the latent efficient-price component of the observed returns process. For

instance, if large returns (of either sign) tend to cluster, the skip-one estimator is likely to be biased downward

in practice irrespective of the chosen sampling frequency.

In summary, we find that it is hard to assess the impact of market microstructure noise on volatility

estimated from the realized bipower variation of a process. The primary cause of this difficulty appears to be

the issue of zero returns in samples that are drawn from discretely generated data. Nevertheless, it is evident
27The volatility, rather than variance, estimates are shown, i.e., results for

√
RBVt are displayed.

28Note that in the case of the absolute power variation method, a natural way for adjusting the estimator for changes in the
prevalence of intervals with zero returns is to adjust the sample size, i.e., to set the sample size equal to the number of intervals
with non-zero returns. No such simple adjustment is available for the estimator that is based on the bipower variation of returns.
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Figure 13: Time-averaged bipower variation volatility signature plots

Notes: Horizontal axes use log scale. Shaded areas represent 95% confidence intervals for average volatility.

Announcement Days Non - Announcement DaysFigure 13

A. Dollar/euro returns

V
o
l
a
t
i
l
i
t
y
 
(
P

e
r
c
e
n
t
)

6

7

8

9

10

Sampling Interval Length (Seconds)

1 2 4 8 16 32 64 128 256 512 1024 2048

B. Ten-year T-note returns

V
o
l
a
t
i
l
i
t
y
 
(
P

e
r
c
e
n
t
)

3

4

5

6

Sampling Interval Length (Seconds)

1 2 4 8 16 32 64 128 256 512 1024 2048

39



Figure 14: Time-averaged bipower variation volatility signature plots, using skip-one returns

Notes: Horizontal axes use log scale. Shaded areas represent 95% confidence intervals for average volatility.
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that the choice of sampling frequency is important for this class of volatility estimators as well. There is some

evidence that using the skip-one estimator may help eliminate some of the noise, as suggested by the fairly

flat signature plots for T-note returns in Figure 14B, but this estimator may also induce a downward bias

that depends on the conditional distribution of the efficient-price component of the returns process. Given

the increasing popularity of the bipower volatility estimator, an important topic for future research is the

development of formal rules for choosing the critical or optimal sampling frequency. In addition, it would

appear to be useful to develop kernel-based or subsampling-based extensions to volatility estimators that are

based on the absolute power variation and bipower variation of the returns process.

7 Discussion

Using volatility signature plots, we have found that the critical sampling frequency is considerably higher (by

a factor of 6 or more) and the resulting intraday sample lengths are considerably lower for dollar/euro returns

than for T-note returns. What are some of the—not necessarily independent—factors that may explain this

striking difference? Both markets are based on electronic order book systems, and both have achieved large

market shares in their respective fields. However, the number of active trading terminals is considerably larger

on EBS than on BrokerTec, as is the number of transactions per day. In contrast, the average size of each

transaction is lower on EBS than it is on BrokerTec, suggesting that the price impact of EBS transactions may

also be lower on average. In addition, the bid-ask spread in the dollar/euro exchange rate pair is, on average,

only about sixty percent the size of that of the 10-year Treasury note. All of these factors may explain the

observed differences in the critical sampling frequencies.

Judging from the volatility signature plots, the critical sampling frequencies for estimating the realized

volatility of the returns to the 10-year Treasury securities and, even more so, of the returns to the dollar/euro

pair are much higher, and the associated critical sampling interval lengths are therefore shorter, than those

reported in the empirical literature for all but the most liquid of exchange-traded shares (e.g., Bandi and

Russell 2006). Lower bid-ask spreads and other lower transaction costs, a smaller price impact of trades, and

the fact that the number of distinct assets traded on these two systems is quite small—which, ceteris paribus,

should raise their liquidity—are all good candidates for explaining why their critical sampling frequencies are

so much higher than those in some other financial markets.

Two additional findings reported in this paper are that there is, in general, substantial heterogeneity in

the shapes of the daily volatility signature plots and that, on any given day, the realized volatilities computed

from adjacent sampling frequencies can differ considerably from each other at lower sampling frequencies. A

related finding, we believe, is that the sampling interval lengths chosen by the rules proposed by Bandi and
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Russell (2006) and Aı̈t-Sahalia, Mykland, and Zhang (2005) are generally considerably longer than those that

would be chosen visually, i.e., on the basis of the signature plots. We conjecture that a key to interpreting

these findings is to recall that financial returns—and especially those sampled at very high frequencies—tend

to be very leptokurtic. Returns that occur during possibly just a handful of intraday periods may make

disproportionate contributions to estimates of realized volatility, and these contributions can depend strongly

on the precise choice of sampling frequency. The heterogeneity in the shapes of the daily volatility signature

plots may also be a by-product of the leptokurtosis of high-frequency data. We suggest that one of the practical

uses of computing realized volatility via robust methods—such as those that are based on the absolute power,

bipower, and multipower variation of returns—may be to shed more light on the role leptokurtosis of returns

plays in driving the heterogeneity present in the shapes of the daily realized volatility signature plots.

The extent to which these findings carry over to other time series is obviously of great interest from an

applied perspective. First, because heavy tails are a fairly prevalent feature in most return series, it would

seem likely that the aspects of the above findings that can be related to the leptokurtosis of returns apply to

many other assets and markets as well. In particular, the heterogeneity in the shapes of the daily volatility

signature plots seems unlikely to be specific to the two series that we study here.

Second, regarding the systematic differences we find between the sampling frequencies chosen by the formal

rules and those based on the signature plots, it also seems likely that these differences should be most serious

for the most liquid financial time series. When returns sampled even at the highest-available frequency still

contain too much signal and not enough noise to consistently estimate the noise-to-signal ratio that enters

into the formula for the optimal sampling rule, we would expect that these rules would understate the optimal

sampling frequency and overstate the optimal sampling interval lengths.

This “problem,” such as it is, should be most acute in the most liquid markets; conversely, it should be

less severe, e.g., in markets for thinly traded stocks. The dollar/euro spot market studied in this paper is, by

several measures, the most liquid market in the world, and it therefore seems plausible that the differences

in the conclusions regarding the optimal sampling frequency stemming from the use of signature plots and

formal decision rules could be considerable. This conjecture is supported by our finding that even for the

T-note market, which is also very liquid but not as liquid as the dollar/euro spot FX market, the differences

between the optimal sampling frequencies indicated by the signature plots and the formal sampling rules are

smaller, even though they are still significant.

We caution that as many markets tend to become deeper and more liquid over time, it will likely become

increasingly difficult to obtain good estimates of the noise variance parameter that are needed to formally

calculate the optimal sampling frequency. Finally, since major liquid markets often tend to be the ones that
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are studied most frequently in applied finance and econometrics, this issue is likely to be a relevant concern

in many situations.

8 Conclusion

In this paper, we use various methods to examine the dependence of estimates of realized volatility on the

sampling frequency and to determine if one can determine empirically a critical sampling frequency, beyond

which estimates of integrated volatility become increasingly contaminated by market microstructure noise.

We study returns on the dollar/euro exchange rate pair and on the on-the-run 10-year U.S. Treasury security

in 2005, at intraday sampling frequencies as high as once every second. We detect strong evidence of an

upward bias in realized volatility at the very highest sampling frequencies. Time-averaged volatility signature

plots suggest that dollar/euro returns may be sampled as frequently as once every 15 to 20 seconds without

the standard realized volatility estimator incurring market microstructure-induced bias. In contrast, returns

on the 10-year Treasury security should be sampled no more frequently than once every 2 to 3 minutes on

non-announcement days, and about once every 40 seconds on announcement days, in order to avoid obtaining

upwardly-biased estimates of realized volatility.

If one uses realized kernel estimators, which eliminate some of the serial correlation in the returns that

is induced by market microstructure noise, the critical sampling frequencies increase even further. By using

the simplest possible realized kernel estimator, which merely adds the first-order autocovariance term to the

standard estimator, the critical sampling frequency rises to about once every 2 to 5 seconds for dollar/euro

returns and to about once every 30 to 40 seconds for T-note returns. The resulting high degree of precision with

which integrated volatility may be estimated suggests that the economic benefits for risk-averse investors who

employ these methods to guide their portfolio choices should be substantial, in comparison with approaches

that estimate volatility using either daily-frequency data or more sparsely sampled intraday data.

References

Aı̈t-Sahalia, Y., and J. Jacod, 2009, “Testing for jumps in a discretely observed process,” Annals of Statistics,
37(1), 184–222.

Aı̈t-Sahalia, Y., P. A. Mykland, and L. Zhang, 2005, “How often to sample a continuous-time process in the
presence of market microstructure noise,” Review of Financial Studies, 18(2), 351–416.

, 2008, “Ultra high frequency volatility estimation with dependent market microstructure noise,”
Manuscript, Department of Statistics, University of Chicago.

Andersen, T. G., T. Bollerslev, and F. X. Diebold, 2007, “Roughing it up: Including jump components in
the measurement, modeling and forecasting of return volatility,” Review of Economics and Statistics, 89(4),
701–720.

43



Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens, 2001, “The distribution of realized stock return
volatility,” Journal of Financial Economics, 61(1), 43–76.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys, 2000, “Great realisations,” Risk, 13, 105–108.

, 2001, “The distribution of realized exchange rate volatility,” Journal of the American Statistical
Association, 96(453), 42–55.

, 2003, “Modeling and forecasting realized volatility,” Econometrica, 71(2), 579–625.

Andersen, T. G., T. Bollerslev, F. X. Diebold, and C. Vega, 2003, “Micro effects of macro announcements:
Real-time price discovery in foreign exchange,” American Economic Review, 93(1), 38–62.

Andersen, T. G., T. Bollerslev, and N. Meddahi, 2006, “Realized volatility forecasting and market microstruc-
ture noise,” Manuscript, Department of Economics, Duke University, Durham NC.

Balduzzi, P., E. J. Elton, and T. C. Green, 2001, “Economic news and bond prices: Evidence from the U.S.
Treasury market,” Journal of Financial and Quantitative Analysis, 36(4), 523–543.

Bandi, F. M., and J. R. Russell, 2006, “Separating microstructure noise from volatility,” Journal of Financial
Economics, 79(3), 655–692.

, 2007, “Volatility estimation,” in Handbooks in Operations Research and Management Science, Vol-
ume 15: Financial Engineering, ed. by J. R. Birge, and V. Linetsky. Elsevier Science, Amsterdam, chap. 5,
pp. 183–222.

, 2008, “Microstructure noise, realized variance, and optimal sampling,” Review of Economic Studies,
75(2), 339–369.

Barndorff-Nielsen, O. E., 1997a, “Normal inverse Gaussian distributions and stochastic volatility modelling,”
Scandinavian Journal of Statistics, 24(1), 1–13.

, 1997b, “Processes of normal inverse Gaussian type,” Finance and Stochastics, 2(1), 41–68.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard, 2008, “Designing realized kernels to
measure the ex-post variation of equity prices in the presence of noise,” Econometrica, 76(6), 1481–1536.

Barndorff-Nielsen, O. E., and N. Shephard, 2001, “Non-Gaussian Ornstein-Uhlenbeck based models and some
of their uses in financial economics (with discussion),” Journal of the Royal Statistical Society, Series B,
63(2), 167–241.

, 2002a, “Econometric analysis of realized volatility and its use in estimating stochastic volatility
models,” Journal of the Royal Statistical Society, Series B, 64(2), 253–280.

, 2002b, “Estimating quadratic variation using realized variance,” Journal of Applied Econometrics,
17(5), 457–477.

, 2003, “Realized power variation and stochastic volatility models,” Bernoulli, 9(2), 243–265.

, 2004a, “Econometric analysis of realized covariation: High frequency based covariance, regression,
and correlation in financial economics,” Econometrica, 72(3), 885–925.

, 2004b, “Power and bipower variation with stochastic volatility and jumps (with discussion),” Journal
of Financial Econometrics, 2(1), 1–48.

, 2006a, “Econometrics of testing for jumps in financial economics using bipower variation,” Journal
of Financial Econometrics, 4(1), 1–30.

, 2006b, “Impact of jumps on returns and realised variances: Econometric analysis of time-deformed
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